A170818 a(n) is the product of primes (with multiplicity) of form 4*k+1 that divide n.
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 13, 1, 5, 1, 17, 1, 1, 5, 1, 1, 1, 1, 25, 13, 1, 1, 29, 5, 1, 1, 1, 17, 5, 1, 37, 1, 13, 5, 41, 1, 1, 1, 5, 1, 1, 1, 1, 25, 17, 13, 53, 1, 5, 1, 1, 29, 1, 5, 61, 1, 1, 1, 65, 1, 1, 17, 1, 5, 1, 1, 73, 37, 25, 1, 1, 13, 1, 5, 1, 41, 1, 1, 85, 1, 29, 1
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- A. Tripathi, On Pythagorean triples containing a fixed integer, Fib. Q., 46/47 (2008/2009), 331-340.
- Index to divisibility sequences
Programs
-
Maple
a:= n-> mul(`if`(irem(i[1], 4)=1, i[1]^i[2], 1), i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Jun 09 2014
-
Mathematica
a[n_] := Product[{p, e} = pe; If[Mod[p, 4] == 1, p^e, 1], {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, May 29 2019 *)
-
PARI
a(n)=my(f=factor(n)); prod(i=1,#f~,if(f[i,1]%4>1,1,f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
-
Python
from sympy import factorint, prod def a072438(n): f = factorint(n) return 1 if n == 1 else prod(i**f[i] for i in f if i % 4 != 1) def a(n): return n//a072438(n) # Indranil Ghosh, May 08 2017
Formula
a(n) = n/A072438(n). - Michel Marcus, Mar 05 2015
Comments