cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170818 a(n) is the product of primes (with multiplicity) of form 4*k+1 that divide n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 13, 1, 5, 1, 17, 1, 1, 5, 1, 1, 1, 1, 25, 13, 1, 1, 29, 5, 1, 1, 1, 17, 5, 1, 37, 1, 13, 5, 41, 1, 1, 1, 5, 1, 1, 1, 1, 25, 17, 13, 53, 1, 5, 1, 1, 29, 1, 5, 61, 1, 1, 1, 65, 1, 1, 17, 1, 5, 1, 1, 73, 37, 25, 1, 1, 13, 1, 5, 1, 41, 1, 1, 85, 1, 29, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2009

Keywords

Comments

Completely multiplicative with a(p) = p if p = 4k+1 and a(p) = 1 otherwise. - Tom Edgar, Mar 05 2015

Crossrefs

Programs

  • Maple
    a:= n-> mul(`if`(irem(i[1], 4)=1, i[1]^i[2], 1), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 09 2014
  • Mathematica
    a[n_] := Product[{p, e} = pe; If[Mod[p, 4] == 1, p^e, 1], {pe, FactorInteger[n]}];
    Array[a, 100] (* Jean-François Alcover, May 29 2019 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f~,if(f[i,1]%4>1,1,f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import factorint, prod
    def a072438(n):
        f = factorint(n)
        return 1 if n == 1 else prod(i**f[i] for i in f if i % 4 != 1)
    def a(n): return n//a072438(n) # Indranil Ghosh, May 08 2017

Formula

a(n) = n/A072438(n). - Michel Marcus, Mar 05 2015