cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A286361 Least number with the same prime signature as {the largest divisor of n with only prime factors of the form 4k+1} has: a(n) = A046523(A170818(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 6, 1, 1, 2, 1, 2, 1, 1, 2, 2, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 6, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, May 08 2017

Keywords

Crossrefs

Differs from A063014 for the first time at n=25, where a(25) = 4, while A063014(25) = 3.

Programs

  • Python
    from sympy import factorint
    from operator import mul
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a072438(n):
        f = factorint(n)
        return 1 if n == 1 else reduce(mul, [1 if i%4==1 else i**f[i] for i in f])
    def a(n): return a046523(n/a072438(n)) # Indranil Ghosh, May 09 2017
  • Scheme
    (define (A286361 n) (A046523 (A170818 n)))
    

Formula

a(n) = A046523(A170818(n)).
a(n) = A286363(A267099(n)).

A324891 a(n) = sigma(A170818(n)), where A170818(n) is the part of n composed of prime factors of form 4k+1.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 1, 1, 6, 1, 1, 14, 1, 6, 1, 18, 1, 1, 6, 1, 1, 1, 1, 31, 14, 1, 1, 30, 6, 1, 1, 1, 18, 6, 1, 38, 1, 14, 6, 42, 1, 1, 1, 6, 1, 1, 1, 1, 31, 18, 14, 54, 1, 6, 1, 1, 30, 1, 6, 62, 1, 1, 1, 84, 1, 1, 18, 1, 6, 1, 1, 74, 38, 31, 1, 1, 14, 1, 6, 1, 42, 1, 1, 108, 1, 30, 1, 90, 6, 14, 1, 1, 1, 6, 1, 98, 1, 1, 31, 102, 18, 1, 14, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 27 2019

Keywords

Crossrefs

Programs

  • PARI
    A324891(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4>1, 1, ((f[i,1]^(1+f[i,2]))-1)/(f[i,1]-1))); };
    
  • PARI
    A170818(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4>1, 1, f[i, 1])^f[i, 2]); }; \\ From A170818
    A324891(n) = sigma(A170818(n));

Formula

Multiplicative with a(p^e) = (p^(e+1) - 1)/(p-1) if p == 1 (mod 4), otherwise a(p^e) = 1.
a(n) = A000203(A170818(n)).
a(n) = A000593(n) / A324893(n).

A097706 Part of n composed of prime factors of form 4k+3.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 11, 3, 1, 7, 3, 1, 1, 9, 19, 1, 21, 11, 23, 3, 1, 1, 27, 7, 1, 3, 31, 1, 33, 1, 7, 9, 1, 19, 3, 1, 1, 21, 43, 11, 9, 23, 47, 3, 49, 1, 3, 1, 1, 27, 11, 7, 57, 1, 59, 3, 1, 31, 63, 1, 1, 33, 67, 1, 69, 7, 71, 9, 1, 1, 3, 19, 77, 3, 79, 1, 81, 1, 83, 21
Offset: 1

Views

Author

Ralf Stephan, Aug 30 2004

Keywords

Comments

Largest term of A004614 that divides n. - Peter Munn, Apr 15 2021

Crossrefs

Equivalent sequence for distinct prime factors: A170819.
Equivalent sequences for prime factors of other forms: A000265 (2k+1), A170818 (4k+1), A072436 (not 4k+3), A248909 (6k+1), A343431 (6k+5).
Range of values: A004614.
Positions of 1's: A072437.

Programs

  • Maple
    a:= n-> mul(`if`(irem(i[1], 4)=3, i[1]^i[2], 1), i=ifactors(n)[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 09 2014
  • Mathematica
    a[n_] := Product[{p, e} = pe; If[Mod[p, 4] == 3, p^e, 1], {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Jun 16 2015, updated May 29 2019 *)
  • PARI
    a(n)=local(f); f=factor(n); prod(k=1, matsize(f)[1], if(f[k, 1]%4<>3, 1, f[k, 1]^f[k, 2]))
    
  • Python
    from sympy import factorint
    from operator import mul
    def a072436(n):
        f=factorint(n)
        return 1 if n == 1 else reduce(mul, [1 if i%4==3 else i**f[i] for i in f])
    def a(n): return n/a072436(n) # Indranil Ghosh, May 08 2017
    
  • Python
    from math import prod
    from sympy import factorint
    def A097706(n): return prod(p**e for p, e in factorint(n).items() if p & 3 == 3) # Chai Wah Wu, Jun 28 2022

Formula

a(n) = n/A072436(n).
a(A004614(n)) = A004614(n).
a(A072437(n)) = 1.
a(n) = A000265(n)/A170818(n). - Peter Munn, Apr 15 2021

A343430 Part of n composed of prime factors of the form 3k-1.

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 11, 4, 1, 2, 5, 16, 17, 2, 1, 20, 1, 22, 23, 8, 25, 2, 1, 4, 29, 10, 1, 32, 11, 34, 5, 4, 1, 2, 1, 40, 41, 2, 1, 44, 5, 46, 47, 16, 1, 50, 17, 4, 53, 2, 55, 8, 1, 58, 59, 20, 1, 2, 1, 64, 5, 22, 1, 68, 23, 10, 71, 8, 1, 2, 25, 4, 11, 2, 1, 80, 1, 82, 83, 4, 85
Offset: 1

Views

Author

Peter Munn, Jun 08 2021

Keywords

Comments

Largest term of A004612 that divides n.
Modulo 6, the prime numbers are partitioned into 4 nonempty sets: {2}, {3}, primes of the form 6k-1 (A007528) and primes of the form 6k+1 (A002476). The modulo 3 partition is nearly the same, but unites the only even prime, 2, with primes of the form 6k-1 in the set of primes we use here.
A positive integer m is a Loeschian number (a term of A003136) if and only if a(A007913(m)) = 1, that is the squarefree part of m has no prime factors of the form 3k-1.

Examples

			n = 60 has prime factorization 60 = 2 * 2 * 3 * 5. Factors 2 = 3*1 - 1 and 5 = 3*2 - 1 have form 3k-1, whereas 3 does not (having form 3k). Multiplying the factors of form 3k-1, we get 2 * 2 * 5 = 20. So a(60) = 20.
		

Crossrefs

Equivalent sequences for prime factors of other forms: A006519 (2 only), A000265 (2k+1), A038500 (3 only), A038502 (3k+/-1), A170818 (4k+1), A097706 (4k-1), A248909 (6k+1), A343431 (6k-1).
Range of terms: A004612 (closure under multiplication of A003627).
Cf. A002476, A007528, squarefree part (A007913) of terms of A003136.
First 28 terms are the same as A247503.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 3] == 2, p^e, 1]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 11 2021 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 1] + 1) % 3, f[i, 1] = 1); ); factorback(f); } \\ after Michel Marcus at A248909
    
  • Python
    from math import prod
    from sympy import factorint
    def A343430(n): return prod(p**e for p, e in factorint(n).items() if p%3==2) # Chai Wah Wu, Dec 23 2022

Formula

Completely multiplicative with a(p) = p if p is of the form 3k-1, otherwise a(p) = 1.
For k >= 1, a(n) = a(k*n) / gcd(k, a(k*n)).
a(n) = A006519(n) * A343431(n).
a(n) = (n / A038500(n)) / A248909(n) = A038502(n) / A248909(n).
A006519(a(n)) = a(A006519(n)) = A006519(n).
A343431(a(n)) = a(A343431(n)) = A343431(n).
A038500(a(n)) = a(A038500(n)) = 1.
A248909(a(n)) = a(A248909(n)) = 1.

A248909 Completely multiplicative with a(p) = p if p = 6k+1 and a(p) = 1 otherwise.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 13, 7, 1, 1, 1, 1, 19, 1, 7, 1, 1, 1, 1, 13, 1, 7, 1, 1, 31, 1, 1, 1, 7, 1, 37, 19, 13, 1, 1, 7, 43, 1, 1, 1, 1, 1, 49, 1, 1, 13, 1, 1, 1, 7, 19, 1, 1, 1, 61, 31, 7, 1, 13, 1, 67, 1, 1, 7, 1, 1, 73, 37, 1, 19, 7, 13, 79, 1, 1
Offset: 1

Views

Author

Tom Edgar, Mar 06 2015

Keywords

Comments

To compute a(n) replace primes not of the form 6k+1 in the prime factorization of n by 1.
The first place this sequence differs from A170824 is at n = 49.
For p prime, a(p) = p if p is a term in A002476 and a(p) = 1 if p = 2, p = 3 or p is a term in A007528.
a(n) is the largest term of A004611 that divides n. - Peter Munn, Mar 06 2021

Examples

			a(49) = 49 because 49 = 7^2 and 7 = 6*1 + 1.
a(15) = 1 because 15 = 3*5 and neither of these primes is of the form 6k+1.
a(62) = 31 because 62 = 31*2, 31 = 6*5 + 1, and 2 is not of the form 6k+1.
		

Crossrefs

Sequences used in a definition of this sequence: A002476, A004611, A007528, A020639, A028234, A032742.
Equivalent sequence for distinct prime factors: A170824.
Equivalent sequences for prime factors of other forms: A000265 (2k+1), A343430 (3k-1), A170818 (4k+1), A097706 (4k-1), A343431 (6k-1), A065330 (6k+/-1), A065331 (<= 3).

Programs

  • Maple
    A248909 := proc(n)
        local a,pf;
        a := 1 ;
        for pf in ifactors(n)[2] do
            if modp(op(1,pf),6) = 1 then
                a := a*op(1,pf)^op(2,pf) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Mar 14 2015
  • Mathematica
    f[p_, e_] := If[Mod[p, 6] == 1, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i,1] - 1) % 6, f[i, 1] = 1);); factorback(f);} \\ Michel Marcus, Mar 11 2015
    
  • Python
    from sympy import factorint
    def A248909(n):
        y = 1
        for p,e in factorint(n).items():
            y *= (1 if (p-1) % 6 else p)**e
        return y # Chai Wah Wu, Mar 15 2015
    
  • Sage
    n=100; sixnplus1Primes=[x for x in primes_first_n(100) if (x-1)%6==0]
    [prod([(x^(x in sixnplus1Primes))^y for x,y in factor(n)]) for n in [1..n]]
    
  • Scheme
    (define (A248909 n) (if (= 1 n) n (* (if (= 1 (modulo (A020639 n) 6)) (A020639 n) 1) (A248909 (A032742 n))))) ;; Antti Karttunen, Jul 09 2017

Formula

a(1) = 1; for n > 1, if A020639(n) = 1 (mod 6), a(n) = A020639(n) * a(A032742(n)), otherwise a(n) = a(A028234(n)). - Antti Karttunen, Jul 09 2017
a(n) = a(A065330(n)). - Peter Munn, Mar 06 2021

A170819 a(n) = product of distinct primes of the form 4k-1 that divide n.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 7, 1, 3, 1, 11, 3, 1, 7, 3, 1, 1, 3, 19, 1, 21, 11, 23, 3, 1, 1, 3, 7, 1, 3, 31, 1, 33, 1, 7, 3, 1, 19, 3, 1, 1, 21, 43, 11, 3, 23, 47, 3, 7, 1, 3, 1, 1, 3, 11, 7, 57, 1, 59, 3, 1, 31, 21, 1, 1, 33, 67, 1, 69, 7, 71, 3, 1, 1, 3, 19, 77, 3, 79, 1, 3, 1, 83, 21, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2009

Keywords

Crossrefs

Programs

  • Maple
    A170819 := proc(n) a := 1 ; for p in numtheory[factorset](n) do if p mod 4 = 3 then a := a*p ; end if; end do: a ; end proc:
    seq(A170819(n),n=1..20) ; # R. J. Mathar, Jun 07 2011
  • Mathematica
    Array[Times @@ Select[FactorInteger[#][[All, 1]], Mod[#, 4] == 3 &] &, 85] (* Michael De Vlieger, Feb 19 2019 *)
  • PARI
    for(n=1,99, t=select(x->x%4==3, factor(n)[,1]); print1(prod(i=1,#t,t[i])","))

Formula

Multiplicative with a(p^e) = p^A011765(p+1), e > 0. - R. J. Mathar, Jun 07 2011
a(n) = A007947(A097706(n)) = A097706(A007947(n)). - Peter Munn, Jul 06 2023

Extensions

Extended with PARI program by M. F. Hasler, Dec 23 2009

A267113 Bitwise-OR of the exponents of all 4k+1 primes in the prime factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Examples

			For n = 65 = 5 * 13 = (4+1)^1 * ((3*4)+1)^1, bitwise-or of 1 and 1 is 1, thus a(65) = 1.
		

Crossrefs

Cf. A004144 (indices of zeros), A009003 (of nonzeros).
Differs from both A046080 and A083025 for the first time at n=65, which here a(65) = 1.

Formula

a(n) = A267116(A170818(n)).
Other identities. For all n >= 0:
a(n) = a(A170818(n)). [The result depends only on the prime factors of the form 4k+1.]
a(n) <= A083025(n).

A343431 Part of n composed of prime factors of the form 6k-1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 11, 1, 1, 1, 5, 1, 17, 1, 1, 5, 1, 11, 23, 1, 25, 1, 1, 1, 29, 5, 1, 1, 11, 17, 5, 1, 1, 1, 1, 5, 41, 1, 1, 11, 5, 23, 47, 1, 1, 25, 17, 1, 53, 1, 55, 1, 1, 29, 59, 5, 1, 1, 1, 1, 5, 11, 1, 17, 23, 5, 71, 1, 1, 1, 25, 1, 11, 1, 1, 5, 1, 41, 83, 1, 85, 1, 29, 11, 89, 5
Offset: 1

Views

Author

Peter Munn, Apr 15 2021

Keywords

Comments

Completely multiplicative with a(p) = p if p is of the form 6k-1 and a(p) = 1 otherwise.
Largest term of A259548 that divides n.

Crossrefs

Equivalent sequence for distinct prime factors: A170825.
Equivalent sequences for prime factors of other forms: A000265 (2k+1), A343430 (3k-1), A170818 (4k+1), A097706 (4k-1), A248909 (6k+1), A065330 (6k+/-1), A065331 (<= 3), A355582 (<= 5).
Range of terms: A259548.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 6] == 5, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* after Amiram Eldar at A248909 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((f[i, 1] + 1) % 6, f[i, 1] = 1); ); factorback(f); } \\ after Michel Marcus at A248909
    
  • Python
    from math import prod
    from sympy import factorint
    def A343431(n): return prod(p**e for p, e in factorint(n).items() if not (p+1)%6) # Chai Wah Wu, Dec 26 2022

Formula

a(n) = n / A065331(n) / A248909(n) = A065330(n) / A248909(n).

A170817 a(n) = product of distinct primes of form 4k+1 that divide n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 13, 1, 5, 1, 17, 1, 1, 5, 1, 1, 1, 1, 5, 13, 1, 1, 29, 5, 1, 1, 1, 17, 5, 1, 37, 1, 13, 5, 41, 1, 1, 1, 5, 1, 1, 1, 1, 5, 17, 13, 53, 1, 5, 1, 1, 29, 1, 5, 61, 1, 1, 1, 65, 1, 1, 17, 1, 5, 1, 1, 73, 37, 5, 1, 1, 13, 1, 5, 1, 41, 1, 1, 85, 1, 29, 1
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2009

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul (i, i=map (x-> x[1], select (x-> isprime (x[1]) and irem (x[1], 4)=1, ifactors(n)[2]))): seq (a(n), n=1..120);
  • Mathematica
    Table[Times@@Select[Transpose[FactorInteger[n]][[1]],Mod[#,4]==1&], {n,90}] (* Harvey P. Dale, Dec 07 2012 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] % 4 == 1, f[i,1], 1));} \\ Amiram Eldar, Jun 09 2025

Extensions

Corrected and extended with Maple program by Alois P. Heinz, Dec 23 2009
Showing 1-9 of 9 results.