cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A170934 a(n) = b(n) + b(n+1) + 2, where b() = A000930().

Original entry on oeis.org

4, 4, 5, 7, 9, 12, 17, 24, 34, 49, 71, 103, 150, 219, 320, 468, 685, 1003, 1469, 2152, 3153, 4620, 6770, 9921, 14539, 21307, 31226, 45763, 67068, 98292, 144053, 211119, 309409, 453460, 664577, 973984, 1427442, 2092017, 3065999, 4493439, 6585454, 9651451
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2010

Keywords

Programs

  • Mathematica
    CoefficientList[Series[-(3*x^3 - x^2 + 4*x - 4)/((x - 1)*(x^3 + x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 26 2017 *)
    LinearRecurrence[{2,-1,1,-1},{4,4,5,7},50] (* Harvey P. Dale, Jul 10 2020 *)
  • PARI
    x='x+O('x^50); Vec(-(3*x^3 - x^2 + 4*x - 4)/((x - 1)*(x^3 + x - 1))) \\ G. C. Greubel, Apr 26 2017

Formula

From Colin Barker, Jul 25 2013: (Start)
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-a(n-4).
G.f.: -(3*x^3-x^2+4*x-4) / ((x-1)*(x^3+x-1)). (End)
a(n) = a(n-1) + a(n-3) - 2, for n > 2. - Greg Dresden, Feb 09 2020

Extensions

More terms from Colin Barker, Jul 25 2013