A170949 "Conway's Converger": a reordering of the integers (see Comments for definition).
1, 3, 2, 4, 8, 6, 5, 7, 9, 15, 13, 11, 10, 12, 14, 16, 24, 22, 20, 18, 17, 19, 21, 23, 25, 35, 33, 31, 29, 27, 26, 28, 30, 32, 34, 36, 48, 46, 44, 42, 40, 38, 37, 39, 41, 43, 45, 47, 49, 63, 61, 59, 57, 55, 53, 51, 50, 52, 54, 56, 58, 60, 62, 64, 80, 78, 76, 74, 72
Offset: 1
Examples
1 3 2 4 8 6 5 7 9 15 13 11 10 12 14 16 24 22 20 18 17 19 21 23 25 35 33 31 29 27 26 28 30 32 34 36 48 46 44 42 40 38 37 39 41 43 45 47 49 63 61 59 57 55 53 51 50 52 54 56 58 60 62 64 80 78 76 74 72 70 68 66 65 67 69 71 73 75 77 79 81
References
- J. H. Conway, Personal communication, Feb 19 2010
Links
- R. Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for sequences that are permutations of the natural numbers [From _Reinhard Zumkeller_, Mar 08 2010]
Crossrefs
Programs
-
Haskell
a170949 n k = a170949_tabf !! (n-1) !! (k-1) a170949_row n = a170949_tabf !! (n-1) a170949_tabf = [1] : (map fst $ iterate f ([3,2,4], 3)) where f (xs@(x:_), i) = ([x + i + 2] ++ (map (+ i) xs) ++ [x + i + 3], i + 2) a170949_list = concat a170949_tabf -- Reinhard Zumkeller, Jan 31 2014
-
Mathematica
row[n_] := Join[ro = Range[n^2-1, (n-1)^2+1, -2], Reverse[ro]-1, {n^2}]; Array[row, 9] // Flatten (* Jean-François Alcover, Aug 02 2018 *)
Comments