A217005
Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 3) with t_0 = t_1 = ... = t_{j-1} = 2.
Original entry on oeis.org
9, 14, 17, 20, 21, 24, 25, 28, 31, 33, 35, 37, 39, 42, 44, 46, 48, 50, 51
Offset: 0
w(2;3,3)=9, w(3;2,3,3)=14, w(4;2,2,3,3)=17, and so on...
- T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers, 9 (2009), A06, 65-76.
- T. Ahmed, Some more Van der Waerden numbers, J. Int. Seq. 16 (2013) 13.4.4
- B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, Integers, 5(2) (2005), A10.
A171082
Van der Waerden numbers w(2;4,n).
Original entry on oeis.org
35, 55, 73, 109, 146, 309
Offset: 4
A217235
Van der Waerden numbers w(3; 3, 3, n).
Original entry on oeis.org
27, 51, 80, 107
Offset: 3
w(3; 3, 3, 3)=27, w(3; 3, 3, 4) = 51, and so on...
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- Tanbir Ahmed, On computation of exact van der Waerden numbers, Integers: Electronic Journal of Combinatorial Number Theory, 11 (2011), A71.
- M. D. Beeler and P. E. O'Neil, Some new Van der Waerden numbers, Discrete Math., 28 (1979), 135-146.
- B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, Integers, 5(2) (2005), A10.
A217037
Van der Waerden numbers w(2;5,n).
Original entry on oeis.org
- M. Kouril, A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation, Ph. D. Thesis, University of Cincinnati, Engineering: Computer Science and Engineering, 2006.
Showing 1-4 of 4 results.
Comments