A171081
Van der Waerden numbers w(3, n).
Original entry on oeis.org
9, 18, 22, 32, 46, 58, 77, 97, 114, 135, 160, 186, 218, 238, 279, 312, 349
Offset: 3
- Knuth, Donald E., Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, page 5.
- Tanbir Ahmed, Oliver Kullmann, and Hunter Snevily, On the van der Waerden numbers w(2;3,t), arXiv:1102.5433 [math.CO], 2011-2014; Discrete Applied Math., 174 (2014), 27-51.
- Ben Green, New lower bounds for van der Waerden numbers, arXiv:2102.01543 [math.CO], Feb. 2021.
- Tomasz Schoen, A subexponential bound for van der Waerden numbers, arXiv:2006.02877 [math.CO], June 2020.
A217235
Van der Waerden numbers w(3; 3, 3, n).
Original entry on oeis.org
27, 51, 80, 107
Offset: 3
w(3; 3, 3, 3)=27, w(3; 3, 3, 4) = 51, and so on...
- V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.
- Tanbir Ahmed, On computation of exact van der Waerden numbers, Integers: Electronic Journal of Combinatorial Number Theory, 11 (2011), A71.
- M. D. Beeler and P. E. O'Neil, Some new Van der Waerden numbers, Discrete Math., 28 (1979), 135-146.
- B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, Integers, 5(2) (2005), A10.
A217037
Van der Waerden numbers w(2;5,n).
Original entry on oeis.org
- M. Kouril, A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation, Ph. D. Thesis, University of Cincinnati, Engineering: Computer Science and Engineering, 2006.
Showing 1-3 of 3 results.
Comments