A180590 Numbers k such that k! is the sum of two triangular numbers.
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 15, 16, 17, 21, 24, 27, 28, 29, 32, 33, 34, 42, 49, 54, 59, 66, 68, 72, 79, 80, 81, 85, 86, 95, 96, 99, 102, 109, 118
Offset: 1
Examples
0! = 1! = T(0) + T(1); 2! = T(1) + T(1); 3! = T(0) + T(3) = T(2) + T(2); 4! = T(2) + T(6); 5! = T(0) + T(15) = T(5) + T(14); 7! = T(45) + T(89); 8! = T(89) + T(269); 9! = T(210) + T(825); 10! = T(665) + T(2610) = T(1770) + T(2030); 13! = T(71504) + T(85680); 15! = T(213384) + T(1603064) = T(299894) + T(1589154); 16! = T(3631929) + T(5353005); 17! = T(12851994) + T(23370945) = T(17925060) + T(19750115); etc.
Links
- Factor Database, Factors of the numbers 4z!+1
Crossrefs
Programs
-
Mathematica
triQ[n_] := IntegerQ@ Sqrt[8 n + 1]; fQ[n_] := Block[{k = 1, lmt = Floor@Sqrt[2*n! ], nf = n!}, While[k < lmt && ! triQ[nf - k (k + 1)/2], k++ ]; r = (Sqrt[8*(nf - k (k + 1)/2) + 1] - 1)/2; Print[{k, r, n}]; If[IntegerQ@r, True, False]]; k = 1; lst = {}; While[k < 69, If[ fQ@ k, AppendTo[lst, k]]; k++ ]; lst
-
Python
from math import factorial from itertools import count, islice from sympy import factorint def A180590_gen(): # generator of terms return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(4*factorial(n)+1).items()),count(0)) A180590_list = list(islice(A180590_gen(),15)) # Chai Wah Wu, Jun 27 2022
Extensions
Edited by N. J. A. Sloane, Sep 24 2010
69 eliminated (see A152089) by N. J. A. Sloane, Sep 24 2010
Extended by Georgi Guninski and D. S. McNeil, Sep 24 2010
a(35)-a(38) from Georgi Guninski, Oct 12 2010
a(39)-a(40) from Tyler Busby, Apr 24 2025
Comments