cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A171138 Primes of the form 7*p^2+7*p-1 (with p=prime).

Original entry on oeis.org

41, 83, 2141, 2659, 3863, 6089, 15791, 31891, 37813, 66541, 90173, 160663, 187123, 210713, 349663, 362291, 368689, 401519, 442763, 464141, 486023, 679223, 769243, 904679, 945391, 976513, 1061969, 1173829, 1231859, 1315453, 1352119, 1465141
Offset: 1

Views

Author

Vincenzo Librandi, Jan 26 2010

Keywords

Crossrefs

Cf. A171139.

Programs

  • Magma
    [a: p in PrimesInInterval(1, 800) | IsPrime(a) where a is 7*p^2 + 7*p - 1]; // Vincenzo Librandi, Oct 13 2012
  • Mathematica
    Select[Table[7p^2 + 7p - 1,{p, Prime[Range[400]]}], PrimeQ] (* Vincenzo Librandi, Oct 13 2012 *)

A271666 Primes p such that 4*p^2+4*p-1 is prime.

Original entry on oeis.org

2, 3, 7, 13, 17, 23, 31, 37, 53, 59, 67, 139, 149, 151, 157, 167, 179, 193, 199, 223, 233, 293, 307, 331, 359, 373, 389, 431, 479, 571, 587, 619, 643, 653, 683, 809, 839, 857, 863, 919, 937, 947, 1021, 1091, 1123, 1151, 1187, 1277, 1301, 1367, 1427, 1511
Offset: 1

Views

Author

Vincenzo Librandi, Apr 12 2016

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime(4*p^2+4*p-1)];
    
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[4 #^2 + 4 # - 1] &]
  • PARI
    lista(nn) = forprime(p=2, nn, if(isprime(4*p^2+4*p-1), print1(p, ", "))); \\ Altug Alkan, Apr 12 2016
    
  • Python
    from gmpy2 import is_prime
    for p in range(3,10**5,2):
        if(not is_prime(p)):continue
        elif(is_prime(6*p**2+6*p-1)):print(p)
    # Soumil Mandal, Apr 14 2016

A172122 Primes p such that 7*p^2+7*p+1 is also prime.

Original entry on oeis.org

2, 5, 17, 29, 59, 197, 227, 257, 317, 359, 467, 509, 569, 587, 797, 929, 1097, 1187, 1259, 1307, 1439, 1637, 1697, 1847, 1877, 1997, 2027, 2069, 2099, 2237, 2297, 2399, 2459, 2477, 2657, 2687, 2729, 2939, 3167, 3359, 3407, 3467, 3659, 3677, 4019, 4079
Offset: 1

Views

Author

Vincenzo Librandi, Jan 26 2010

Keywords

Crossrefs

Cf. A171139.

Programs

  • Magma
    [p: p in PrimesUpTo(4100) | IsPrime(7*p^2 + 7*p + 1)]; // Vincenzo Librandi, Apr 16 2013
  • Mathematica
    Select[Prime[Range[3000]], PrimeQ[7 #^2 + 7 # + 1]&] (* Vincenzo Librandi, Apr 16 2013 *)

A271667 Primes p such that 6*p^2+6*p-1 is prime.

Original entry on oeis.org

3, 5, 13, 41, 43, 61, 71, 73, 103, 113, 181, 223, 241, 269, 271, 283, 379, 433, 479, 491, 521, 523, 593, 619, 631, 659, 719, 839, 929, 941, 1009, 1039, 1069, 1193, 1249, 1289, 1319, 1429, 1433, 1471, 1489, 1511, 1553, 1601, 1613, 1693, 1699, 1723, 1753, 1861
Offset: 1

Views

Author

Vincenzo Librandi, Apr 12 2016

Keywords

Examples

			3 is a term because 3 is prime and 6*3^2+6*3-1 is 71 which is prime. 13 is a term because 13 is prime and 6*13^2+6*13-1 is 1091 which is prime. - _Soumil Mandal_, Apr 14 2016
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime(6*p^2+6*p-1)];
    
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[6 #^2 + 6 # - 1] &]
  • PARI
    lista(nn) = forprime(p=2, nn, if(isprime(6*p^2+6*p-1), print1(p, ", "))); \\ Altug Alkan, Apr 12 2016
    
  • Python
    from gmpy2 import is_prime
    for p in range(3,10**5,2):
        if(not is_prime(p)):continue
        elif(is_prime(6*p**2+6*p-1)):print(p)
    # Soumil Mandal, Apr 14 2016
Showing 1-4 of 4 results.