A171201 G.f. satisfies: A(x) = (1 + x*A(2x))^3.
1, 3, 21, 289, 7566, 380424, 37361616, 7252471584, 2799853666176, 2155959119115264, 3315891500224031232, 10193070293871040606464, 62646640175842537242599936, 769927299959295414569740867584, 18923273743619678311418282019397632, 930154604531789703005691292148132511744
Offset: 0
Keywords
Programs
-
Mathematica
terms = 16; A[] = 0; Do[A[x] = (1 + x*A[2x])^3 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
-
PARI
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=(1+x*subst(A, x, 2*x))^3); polcoeff(A, n)}
Extensions
a(14)-a(15) from Stefano Spezia, Apr 02 2025