cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A171200 G.f. satisfies A(x) = 1 + x*A(2x)^3.

Original entry on oeis.org

1, 1, 6, 84, 2312, 121056, 12173568, 2391143424, 928316362752, 716762538541056, 1103851068987015168, 3395472896229407981568, 20875407961847891162038272, 256600638160251032545689337856, 6307244441266548036155317187248128
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    m = 15; A[] = 0; Do[A[x] = 1 + x A[2x]^3 + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 07 2019 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, 2*x)^3); polcoeff(A, n)}

Formula

a(0) = 1; a(n) = 2^(n-1) * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1). - Ilya Gutkovskiy, Nov 03 2021

A171202 G.f. A(x) satisfies A(x) = 1 + x*A(2*x)^4.

Original entry on oeis.org

1, 1, 8, 152, 5664, 399376, 53846016, 14141384704, 7330134466560, 7551251740344320, 15510852680588984320, 63626087316632048238592, 521607805205244557347782656, 8549156556447111748331767857152, 280190094729160875643888549840814080, 18364219805837823940403573170370661842944
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 16; A[] = 0; Do[A[x] = 1 + x*A[2x]^4 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, 2*x)^4); polcoeff(A, n)}

Formula

a(0) = 1; a(n) = 2^(n-1) * Sum_{i, j, k, l>=0 and i+j+k+l=n-1} a(i) * a(j) * a(k) * a(l). - Seiichi Manyama, Jul 08 2025

A171203 G.f. satisfies: A(x) = (1 + x*A(2x))^4.

Original entry on oeis.org

1, 4, 38, 708, 24961, 1682688, 220959136, 57266675520, 29497077110720, 30294634141775360, 62134850895148484608, 254691311135373319017472, 2087196424913845641682560512, 34202892422993270952623113994240, 1120863025258656246362522776511881216, 73460242428855296330451249854756580540416
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2009

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 16; A[] = 0; Do[A[x] = (1 + x*A[2x])^4 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=(1+x*subst(A, x, 2*x))^4); polcoeff(A, n)}

Formula

Self-convolution 4th power of A171202 where a(n) = A171202(n+1)/2^n for n>=0.

Extensions

a(14)-a(15) from Stefano Spezia, Apr 02 2025
Showing 1-3 of 3 results.