A171206
G.f. A(x) satisfies A(x) = 1 + x*A(2*x)^6.
Original entry on oeis.org
1, 1, 12, 348, 19744, 2108784, 428817600, 169398274624, 131889504749568, 203937600707475456, 628561895904796999680, 3868208404121906515820544, 47571342639450113377565933568, 1169589733863427138021074362433536, 57499379103783344787572704263568097280, 5652994168279651703590653986228287051923456
Offset: 0
-
terms = 16; A[] = 0; Do[A[x] = 1+x*A[2x]^6 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, 2*x)^6); polcoeff(A, n)}
A171208
G.f. A(x) satisfies A(x) = 1 + x*A(2*x)^7.
Original entry on oeis.org
1, 1, 14, 476, 31640, 3953488, 939383200, 433281169216, 393718899904640, 710399428248892928, 2554705943898166145024, 18342976469146094416494592, 263185684727811758287894478848, 7549222852919288301041224694890496, 432993292623369448352459156263293419520
Offset: 0
-
terms = 15; A[] = 0; Do[A[x] = 1+x*A[2x]^7 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A, x, 2*x)^7); polcoeff(A, n)}
A171209
G.f. satisfies: A(x) = (1 + x*A(2x))^7.
Original entry on oeis.org
1, 7, 119, 3955, 247093, 29355725, 6770018269, 3075928905505, 2774997766597238, 4989660046676105752, 17913062958150482828608, 128508635121001835101510976, 1843071985575998120371392747776, 52855626540938653363337299348546560, 3031270298538159379928340759759663584000
Offset: 0
-
terms = 15; A[] = 0; Do[A[x] = (1+x*A[2x])^7 + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Apr 02 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=(1+x*subst(A, x, 2*x))^7); polcoeff(A, n)}
Showing 1-3 of 3 results.