A171224 Riordan array (f(x),x*f(x)) where f(x) is the g.f. of A117641.
1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 11, 6, 3, 0, 1, 42, 23, 9, 4, 0, 1, 167, 90, 36, 12, 5, 0, 1, 684, 365, 144, 50, 15, 6, 0, 1, 2867, 1518, 595, 204, 65, 18, 7, 0, 1, 12240, 6441, 2511, 858, 270, 81, 21, 8, 0, 1, 53043, 27774, 10782, 3672, 1155, 342, 98, 24, 9, 0, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 1, 0, 1; 3, 2, 0, 1; 11, 6, 3, 0, 1; 42, 23, 9, 4, 0, 1; 167, 90, 36, 12, 5, 0, 1; ... Production array begins 0, 1; 1, 0, 1; 3, 1, 0, 1; 9, 3, 1, 0, 1; 27, 9, 3, 1, 0, 1; 81, 27, 9, 3, 1, 0, 1; 243, 81, 27, 9, 3, 1, 0, 1; ... - _Philippe Deléham_, Mar 04 2013
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[[((k+1)/(n+1))*(&+[3^(n-k-2*j)*Binomial(n+1,j)*Binomial(n-k-j-1, n-k-2*j): j in [0..Floor((n-k)/2)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 04 2019
-
Mathematica
T[n_, k_]:= (k+1)/(n+1)*Sum[3^(n-k-2*j)*Binomial[n+1,j]*Binomial[n-k-j-1, n-k-2*j], {j, 0, Floor[(n-k)/2]}]; Table[T[n, k], {n,0,10}, {k,0,n} ]//Flatten (* G. C. Greubel, Apr 04 2019 *)
-
Maxima
T(n,k):=(k+1)/(n+1)*sum(3^(n-k-2*j)*binomial(n+1,j)*binomial(n-k-j-1,n-k-2*j),j,0,floor((n-k)/2)); /* Vladimir Kruchinin, Apr 04 2019 */
-
PARI
{T(n,k) = ((k+1)/(n+1))*sum(j=0, floor((n-k)/2), 3^(n-k-2*j) *binomial(n+1,j)*binomial(n-k-j-1, n-k-2*j))}; \\ G. C. Greubel, Apr 04 2019
-
Sage
[[((k+1)/(n+1))*sum(3^(n-k-2*j)*binomial(n+1,j)*binomial(n-k-j-1, n-k-2*j) for j in (0..floor((n-k)/2))) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 04 2019
Formula
Sum_{k=0..n} T(n,k)*x^k = A117641(n), A033321(n), A007317(n+1), A002212(n+1), A026378(n+1) for x = 0, 1, 2, 3, 4 respectively.
Triangle equals B*A065600*B^(-1) = B^2*A097609*B^(-2) = B^3*A053121*B^(-3), product considered as infinite lower triangular arrays and B = A007318. - Philippe Deléham, Dec 08 2009
T(n,k) = T(n-1,k-1) + Sum_{i>=0} T(n-1,k+1+i)*3^i, T(0,0) = 1. - Philippe Deléham, Feb 23 2012
T(n,k) = ((k+1)/(n+1))*Sum_{j=0..floor((n-k)/2)} 3^(n-k-2*j)*C(n+1,j)*C(n-k-j-1,n-k-2*j). - Vladimir Kruchinin, Apr 04 2019
Extensions
Terms a(55) onward added by G. C. Greubel, Apr 04 2019