cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171232 Array read by antidiagonals, T(n,k) = 2*(n/k) - 1, if n mod k = 0; otherwise, T(n,k) = 1.

Original entry on oeis.org

1, 3, 1, 5, 1, 1, 7, 1, 1, 1, 9, 3, 1, 1, 1, 11, 1, 1, 1, 1, 1, 13, 5, 1, 1, 1, 1, 1, 15, 1, 3, 1, 1, 1, 1, 1, 17, 7, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 9, 5, 3, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 11, 1, 1, 1, 1
Offset: 1

Views

Author

Ross La Haye, Dec 05 2009

Keywords

Comments

T(n,1): continued fraction expansion of coth(1).
T(n,2): continued fraction expansion of tan(1) = cot(pi/2 - 1).

Examples

			Array begins
1 1 1 1 1 ...
3 1 1 1 1 ...
5 1 1 1 1 ...
7 3 1 1 1 ...
9 1 1 1 1 ...
.............
		

Crossrefs

Cf. T(n, 1) = A005408(n-1), T(n, 2) = A093178(n-1), A171233, A077049.

Programs

  • Mathematica
    T[n_,k_] := If[Divisible[n, k], 2*(n/k) - 1, 1]; Table[T[n-k+1, k], {n, 1, 10}, {k,1, n}] //Flatten (* Amiram Eldar, Jun 29 2020 *)

Formula

T(n,k) = A171233(n,k) - A077049(n,k).

Extensions

More terms from Amiram Eldar, Jun 29 2020