cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171246 Triangle read by rows: T(n,k) = 1 + floor(n!/2^((k - n/2)^2 + 1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 7, 13, 7, 1, 1, 13, 51, 51, 13, 1, 1, 23, 181, 361, 181, 23, 1, 1, 34, 530, 2120, 2120, 530, 34, 1, 1, 40, 1261, 10081, 20161, 10081, 1261, 40, 1, 1, 38, 2384, 38144, 152573, 152573, 38144, 2384, 38, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 06 2009

Keywords

Examples

			Triangle begins as:
   1;
   1,  1;
   1,  2,   1;
   1,  3,   3,    1;
   1,  7,  13,    7,    1;
   1, 13,  51,   51,   13,   1;
   1, 23, 181,  361,  181,  23,  1;
   1, 34, 530, 2120, 2120, 530, 34, 1;
		

Crossrefs

Cf. A171229.

Programs

  • Magma
    [[1 +Floor(Factorial(n)/2^((k - n/2)^2 +1)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 11 2019
    
  • Mathematica
    T[n_, k_]:= 1 +Floor[n!*2^(-(k-n/2)^2 -1)]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    {T(n,k) = 1 + floor(n!/2^((k - n/2)^2 +1))}; \\ G. C. Greubel, Apr 11 2019
    
  • Sage
    [[1 + floor(factorial(n)/2^((k-n/2)^2 +1)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 11 2019

Formula

T(n,k) = 1 + floor(n!/2^((k - n/2)^2 +1)).

Extensions

Edited by G. C. Greubel, Apr 11 2019