cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171271 Numbers n such that phi(n)=2*phi(n-1).

Original entry on oeis.org

3, 5, 17, 155, 257, 287, 365, 805, 1067, 2147, 3383, 4551, 6107, 7701, 8177, 9269, 11285, 12557, 12971, 16403, 19229, 19277, 20273, 25133, 26405, 27347, 29155, 29575, 35645, 36419, 38369, 39647, 40495, 47215, 52235, 54653, 65537, 84863
Offset: 1

Views

Author

Farideh Firoozbakht, Feb 23 2010

Keywords

Comments

Theorem: A prime p is in the sequence iff p is a Fermat prime.
Proof: If p=2^2^n+1 is prime (Fermat prime) then phi(p)=2^2^n=2* phi(2^2^n)=2*phi(p-1), so p is in the sequence. Now if p is a prime term of the sequence then phi(p)=2*phi(p-1) so p-1=2*phi(p-1) and we deduce that p-1=2^m hence p is a Fermat prime.

Crossrefs

Programs

Formula

a(n) = A050472(n) + 1. - Ray Chandler, May 01 2015