cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A078359 Number of ways to write n as sum of a positive square and a positive cube.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Comments

a(A066650(n))=0, a(A055394(n))>0, a(A078360(n))=1, a(A054402(n))>1.
Earliest entries with a(n)=3 are n=1737, 2089, 2628, 2817. Earliest entries with a(n)=4 are n=1025, 19225, 27289, 29025, 39329, 48025, 54225. Earliest entries with a(n)=5 are n=92025, 540900, 567225, 747225. There are no a(n)>=6 in the range n=1..700000. - R. J. Mathar, Aug 16 2006
a(3375900) = 6 and a(5472225) = 7 are the first entries with those values. - Robert Israel, Jun 25 2024, [but see A060835. - Hugo Pfoertner, Jun 26 2024]

Examples

			a(1025)=4, as 1025 = 5^2 + 10^3 = 30^2 + 5^3 = 31^2 + 4^3 = 32^2 + 1^3.
		

Crossrefs

Programs

  • Maple
    interface(prettyprint=0) : A078359 := proc(n) local resul,isq,icu ; resul := 0 ; icu := 1 ; while icu^3 < n do if issqr(n-icu^3) then resul := resul+1 ; fi ; icu := icu+1 ; od ; RETURN(resul) ; end: for n from 1 to 100000 do printf("%d %d ",n,A078359(n)) ; od ; # R. J. Mathar, Aug 16 2006
  • Mathematica
    a[n_] := Which[r = Reduce[x > 0 && y > 0 && n == x^2 + y^3, {x, y}, Integers]; r === False, 0, r[[0]] === And, 1, r[[0]] === Or, Length[r], True, Print["error: ", r]];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Feb 13 2018 *)
  • Python
    from collections import Counter
    from itertools import count, takewhile, product
    def aupto(lim):
      sqs = list(takewhile(lambda x: x<=lim-1, (i**2 for i in count(1))))
      cbs = list(takewhile(lambda x: x<=lim-1, (i**3 for i in count(1))))
      cts = Counter(sum(p) for p in product(sqs, cbs))
      return [cts[i] for i in range(1, lim+1)]
    print(aupto(105)) # Michael S. Branicky, May 29 2021

Formula

G.f.: (Sum_{k>=1} x^(k^2)) * (Sum_{k>=1} x^(k^3)). - Seiichi Manyama, Jun 17 2023
Showing 1-1 of 1 results.