cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171402 Smallest number m such that exactly n editing steps (insert or substitute) are necessary to transform the binary representation of m into the least prime not less than m.

Original entry on oeis.org

2, 0, 8, 14, 63, 62, 252, 254, 766, 2040, 4095, 4094, 12286, 32750, 32764, 65534, 262141, 262140, 1048574, 2097150, 7340030, 8388602, 25165820, 33554428, 67108860, 134217696, 268435420, 268435452, 1073741790, 1073741820, 3221225470, 8589934590, 25769803760
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 08 2009

Keywords

Crossrefs

Programs

  • Python
    from Levenshtein import distance  # after pip install python-Levenshtein
    from sympy import nextprime
    def a(n):
        m = 0
        while True:
            b = bin(m)[2:]
            if distance(b, bin(nextprime(m-1))[2:]) == n:
                return m
            m += 1
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 05 2022

Formula

A171400(a(n)) = n.
BinaryLevenshteinDistance(a(n), A007918(a(n))) = n.
For n > 1, A007918(a(n)) must have >= n+1 digits and empirically a(n) >= A151799(A007918(2^(n+1))) + 1 - Michael S. Branicky, Feb 05 2022

Extensions

a(10)-a(26) from Michael S. Branicky, Feb 05 2022
a(27)-a(29) from Michael S. Branicky, Feb 06 2022
a(30)-a(31) from Michael S. Branicky, Feb 19 2022
a(32) from Jinyuan Wang, May 01 2025