A171402 Smallest number m such that exactly n editing steps (insert or substitute) are necessary to transform the binary representation of m into the least prime not less than m.
2, 0, 8, 14, 63, 62, 252, 254, 766, 2040, 4095, 4094, 12286, 32750, 32764, 65534, 262141, 262140, 1048574, 2097150, 7340030, 8388602, 25165820, 33554428, 67108860, 134217696, 268435420, 268435452, 1073741790, 1073741820, 3221225470, 8589934590, 25769803760
Offset: 0
Links
- Michael Gilleland, Levenshtein Distance
- Wikipedia, Levenshtein Distance
Programs
-
Python
from Levenshtein import distance # after pip install python-Levenshtein from sympy import nextprime def a(n): m = 0 while True: b = bin(m)[2:] if distance(b, bin(nextprime(m-1))[2:]) == n: return m m += 1 print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 05 2022
Formula
Extensions
a(10)-a(26) from Michael S. Branicky, Feb 05 2022
a(27)-a(29) from Michael S. Branicky, Feb 06 2022
a(30)-a(31) from Michael S. Branicky, Feb 19 2022
a(32) from Jinyuan Wang, May 01 2025