A143013 Number of Motzkin n-paths with two kinds of level steps one of which is a final step.
1, 2, 3, 7, 17, 43, 114, 310, 861, 2433, 6970, 20198, 59101, 174373, 518179, 1549545, 4659399, 14079553, 42732230, 130208246, 398174723, 1221573603, 3758835953, 11597578995, 35872937745, 111216324015, 345539568900, 1075693015920
Offset: 0
Keywords
Examples
A = 1 + (L + F) + (LL + LF + UD) + (LLL + LLF + LUD + UDL + UDF + ULD + UFD) + ... G.f. = 1 + 2*x + 3*x^2 + 7*x^3 + 17*x^4 + 43*x^5 + 114*x^6 + 310*x^7 + 861*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-x -Sqrt(1-2*x-3*x^2-4*x^3))/(2*x^2) )); // G. C. Greubel, Feb 26 2019 -
Mathematica
CoefficientList[Series[(1-x -Sqrt[1-2*x-3*x^2-4*x^3])/(2*x^2), {x, 0, 30}], x] (* G. C. Greubel, Feb 26 2019 *)
-
Maxima
a(n):=sum(sum((binomial(i-1,k-1)*binomial(k,n-k-i+2)*binomial(k+i-2,i-1))/k,k,1,n-i+2),i,0,n+2); /* Vladimir Kruchinin, May 06 2018 */
-
PARI
{a(n) = if(n<0, 0, polcoeff( (1 - x - sqrt(1 - 2*x - 3*x^2 - 4*x^3 + x^3*O(x^n))) / (2*x^2), n))}
-
PARI
x='x+O('x^30); Vec((1-x-(1-2*x-3*x^2-4*x^3)^(1/2))/(2*x^2)) \\ Altug Alkan, May 06 2018
-
Sage
((1-x -sqrt(1-2*x-3*x^2-4*x^3))/(2*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
Formula
Words on alphabet {U,D,L,F} of length n where U is upstep, D is downstep, L and F are level steps and F can only be immediately followed by D or end of word with defining equation A = 1 + F + LA + UADA.
When convolved with itself yields first difference shifted left one place.
G.f. A(x) satisfies: A(x) = 1 + x + A(x)*x + (A(x)*x)^2.
G.f.: (1+x) / (1-x -(x^2 + x^3) / (1-x -(x^2 + x^3) / (1-x -...))).
G.f.: (1 - x - sqrt(1 - 2*x - 3*x^2 - 4*x^3)) / (2*x^2).
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([0,1,2]). - Gary W. Adamson, Oct 27 2008
Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +3*(1-n)*a(n-2) +2*(5-2*n)*a(n-3)=0. - R. J. Mathar, Oct 25 2012
a(n) = Sum_{i=0..n+2} Sum_{k=1..n-i+2} C(i-1,k-1)*C(k,n-k-i+2)*C(k+i-2,i-1)/k. - Vladimir Kruchinin, May 06 2018
Comments