cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A023146 Numbers k such that prime(k) == 4 (mod k).

Original entry on oeis.org

1, 75, 77, 637331, 637333, 637341, 637343, 27067053, 179992917, 8179002205, 2636913002917, 6201265271239157, 6201265271239347, 6201265271239413, 6201265271239981, 6201265271240331, 6201265271240341, 2159986889494445405, 2159986889494445525, 2159986889494445615
Offset: 1

Views

Author

Keywords

Examples

			The 75th prime is 379 and 379 == 4 (mod 75). Hence 75 is in the sequence.
The 76th prime is 383, but 383 == 3, not 4, (mod 76). So 76 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    nextPrime[n_] := Block[{k = n + 1}, While[!PrimeQ[k], k++]; k]; p = 1; Do[If[Mod[p = nextPrime[p], n] == 4, Print[n]], {n, 1, 10^9}] (* Robert G. Wilson v, Feb 18 2004 *)
    Select[Range[1000], Mod[Prime[#], #] == 4 &] (* Alonso del Arte, Nov 16 2018 *)
  • Sage
    def A023146(max) :
        terms = []
        p = 2
        for n in range(1, max+1) :
            if (p - 4) % n == 0 : terms.append(n)
            p = next_prime(p)
        return terms
    # Eric M. Schmidt, Feb 05 2013

Extensions

More terms from Robert G. Wilson v, Feb 18 2004
2 more terms from Giovanni Resta and Robert G. Wilson v, Feb 22 2006
First term inserted by Eric M. Schmidt, Feb 05 2013
a(11)-a(20) from Giovanni Resta, Feb 23 2020

A171432 Primes that are congruent to 5 mod n, where n is the index of the prime.

Original entry on oeis.org

2, 3, 5, 23, 53, 137, 480881, 480941, 480989, 481001, 481469, 3524099, 3524113, 3524281, 3524309, 70117933, 189961799, 189961907, 189961997, 189962177, 189962609, 189963941, 189963959, 189968729, 514274867, 514282961, 3779851157, 10246935913, 10246936309, 10246936463
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Prime@ Select[Range[10^5], Mod[Prime[#] - 5, #] == 0 &] (* Giovanni Resta, Feb 25 2020 *)

Extensions

a(13) from Harvey P. Dale, Sep 21 2014
Missing a(1)-a(3), a(17) and beyond from Giovanni Resta, Feb 23 2020

A171434 Primes that are congruent to 7 mod n, where n is the index of the prime.

Original entry on oeis.org

2, 3, 7, 13, 61, 151, 397, 1153, 64567, 64577, 480967, 480979, 9559867, 9559897, 9560167, 189961657, 189961819, 189962593, 189963043, 189964321, 189969379, 514272779, 514275401, 1394193607, 1394194727, 1394198807, 10246936003, 75370121191, 75370121767, 75370121839
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Prime@ Select[Range[10^5], Mod[Prime[#] - 7, #] == 0 &] (* Giovanni Resta, Feb 25 2020 *)

Extensions

Missing a(1)-a(4), a(16) and beyond from Giovanni Resta, Feb 23 2020

A360789 Least prime p such that p mod primepi(p) = n.

Original entry on oeis.org

2, 3, 5, 7, 379, 23, 401, 61, 59, 29, 67, 71, 467, 79, 83, 179, 431, 89, 176557, 191, 24419, 491, 97, 101, 499, 1213, 3169, 3191, 523, 229, 3187, 223, 3203, 8609, 3163, 251, 176509, 257, 24509, 263, 3253, 269, 547, 3347, 1304867, 293
Offset: 0

Views

Author

Robert G. Wilson v, Feb 20 2023

Keywords

Comments

Inspired by A048891.

Examples

			For n=0, prime p=2 has p mod primepi(p) = 2 mod 1 = 0 so that a(0) = 2.
For n=4, no prime has p mod primepi(p) = 4 until reaching p=379 which is 379 mod 75 = 4, so that a(4) = 379.
		

Crossrefs

Programs

  • Maple
    V:= Array(0..100): count:= 0:
    p:= 1:
    for k from 1 while count < 101 do
      p:= nextprime(p);
      v:= p mod k;
      if v <= 100 and V[v] = 0 then V[v]:= p; count:= count+1 fi;
    od:
    convert(V,list); # Robert Israel, Feb 28 2023
  • Mathematica
    t[_] := 0; p = 2; pi = 1; While[p < 1400000, m = Mod[p, pi]; If[m < 100 && t[m] == 0, t[m] = p]; p = NextPrime@p; pi++]; t /@ Range[0, 99]
  • PARI
    a(n)={my(k=n); forprime(p=prime(n+1), oo, k++; if(p%k ==n, return(p)))} \\ Andrew Howroyd, Feb 21 2023
    
  • Python
    from sympy import prime, nextprime
    def A360789(n):
        p, m = prime(n+1), n+1
        while p%m != n:
            p = nextprime(p)
            m += 1
        return p # Chai Wah Wu, Mar 18 2023

Formula

a(n) = prime(A073325(n+1)). - Kevin Ryde, Feb 21 2023
Showing 1-4 of 4 results.