cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A171613 a(n) = n^2 + sum of the digits of n^2.

Original entry on oeis.org

0, 2, 8, 18, 23, 32, 45, 62, 74, 90, 101, 125, 153, 185, 212, 234, 269, 308, 333, 371, 404, 450, 500, 545, 594, 638, 695, 747, 803, 854, 909, 977, 1031, 1107, 1169, 1235, 1314, 1388, 1457, 1530, 1607, 1697, 1782, 1871, 1955, 2034, 2126, 2222, 2313, 2408, 2507
Offset: 0

Views

Author

Zak Seidov, Dec 13 2009

Keywords

Comments

Subsequence of A062028 (n + sum of the digits of n).

Crossrefs

Programs

  • Mathematica
    Table[n^2+Total[IntegerDigits[n^2]],{n,0,100}]

A171614 Numbers n with property that (n^2 + sum of the digits of n^2) is even.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 9, 14, 15, 17, 20, 21, 22, 24, 25, 29, 36, 37, 39, 42, 45, 46, 47, 49, 51, 53, 54, 58, 61, 63, 65, 66, 67, 68, 72, 73, 74, 77, 78, 79, 80, 83, 84, 87, 88, 89, 91, 92, 93, 96, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 117, 119, 124, 125, 127, 128
Offset: 1

Views

Author

Zak Seidov, Dec 13 2009

Keywords

Comments

Or, n's such that A171613(n) is even.

Crossrefs

Programs

  • Mathematica
    Union@Table[If[EvenQ[n^2+Total[IntegerDigits[n^2]]],n,0],{n,0,200}]
    Select[Range[0,200],EvenQ[#^2+Total[IntegerDigits[#^2]]]&] (* Harvey P. Dale, Apr 01 2019 *)

A224966 Numbers n such that n^2+sum-of-digits(n^2) is prime.

Original entry on oeis.org

1, 4, 10, 16, 31, 32, 40, 41, 43, 62, 71, 76, 94, 95, 97, 98, 121, 142, 158, 163, 164, 166, 179, 188, 208, 211, 214, 227, 229, 259, 260, 265, 284, 301, 313, 317, 320, 328, 331, 340, 352, 355, 356, 365, 380, 382, 386, 392, 397, 401, 418, 424, 425, 431, 436, 439
Offset: 1

Views

Author

Keywords

Comments

This is the sequence of indices of prime numbers in A171613.
The Ulam spiral for this sequence is a near-perfect line y=-x (see links).

Examples

			a(12)=76 because 76^2=5776, and 5776+(5+7+7+6)=5801, which is prime.
		

Crossrefs

Cf. A048521.
Cf. numbers of the form n^2+sum-of-digits(n^2) A171613, and subsets A171614, A171615.
Cf. A062028.

Programs

  • R
    library(gmp); digsum<-function(x) sum(as.numeric(unlist(strsplit(as.character(x),split=""))))
    ans=as.bigz(rep(0,100)); n=1; i=as.bigz(1)
    while(n<=100) {
    if(isprime((w=i^2+digsum(i^2)))) ans[(n=n+1)-1]=i
    i=i+1
    }; ans
Showing 1-3 of 3 results.