cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A171615 Numbers n with property that (n^2 + sum of the digits of n^2) is odd.

Original entry on oeis.org

4, 6, 10, 11, 12, 13, 16, 18, 19, 23, 26, 27, 28, 30, 31, 32, 33, 34, 35, 38, 40, 41, 43, 44, 48, 50, 52, 55, 56, 57, 59, 60, 62, 64, 69, 70, 71, 75, 76, 81, 82, 85, 86, 90, 94, 95, 97, 98, 99, 100, 101, 102, 103, 106, 114, 116, 118, 120, 121, 122, 123, 126, 129, 131, 135
Offset: 1

Views

Author

Zak Seidov, Dec 13 2009

Keywords

Comments

Or, n's such that A171613(n) is odd.

Crossrefs

Programs

  • Mathematica
    Drop[Union@Table[If[OddQ[n^2+Total[IntegerDigits[n^2]]],n,0],{n,0,200}],1]
    Select[Range[150],OddQ[#^2+Total[IntegerDigits[#^2]]]&] (* Harvey P. Dale, Feb 18 2015 *)

A209303 Numbers of the form x^2 + SumOfSquaredDigits(x).

Original entry on oeis.org

2, 8, 18, 32, 50, 72, 98, 101, 123, 128, 149, 162, 179, 213, 251, 293, 339, 389, 404, 443, 446, 492, 542, 596, 654, 716, 782, 852, 909, 926, 971, 1037, 1107, 1181, 1259, 1341, 1427, 1517, 1611, 1616, 1698, 1784, 1874, 1968, 2066, 2168, 2274, 2384, 2498, 2525
Offset: 1

Views

Author

Keywords

Comments

Note that early terms are not always produced in order. For example, 162 is produced by x=9, but is the 12th term in the sequence. The last out-of-order term is a(30)=926, produced when x=29.

Examples

			251 is in the sequence, because 15^2 + (1^2 + 5^2) = 251.
		

Crossrefs

Programs

  • Mathematica
    Table[n^2+Total[IntegerDigits[n]^2],{n,100}]//Union (* Harvey P. Dale, Jan 25 2021 *)
  • R
    sort((1:10000)^2+vapply(1:10000,sum(as.numeric(unlist(strsplit(as.character(as.bigz(x)),split="")))^2),1))

A171614 Numbers n with property that (n^2 + sum of the digits of n^2) is even.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 9, 14, 15, 17, 20, 21, 22, 24, 25, 29, 36, 37, 39, 42, 45, 46, 47, 49, 51, 53, 54, 58, 61, 63, 65, 66, 67, 68, 72, 73, 74, 77, 78, 79, 80, 83, 84, 87, 88, 89, 91, 92, 93, 96, 104, 105, 107, 108, 109, 110, 111, 112, 113, 115, 117, 119, 124, 125, 127, 128
Offset: 1

Views

Author

Zak Seidov, Dec 13 2009

Keywords

Comments

Or, n's such that A171613(n) is even.

Crossrefs

Programs

  • Mathematica
    Union@Table[If[EvenQ[n^2+Total[IntegerDigits[n^2]]],n,0],{n,0,200}]
    Select[Range[0,200],EvenQ[#^2+Total[IntegerDigits[#^2]]]&] (* Harvey P. Dale, Apr 01 2019 *)

A224966 Numbers n such that n^2+sum-of-digits(n^2) is prime.

Original entry on oeis.org

1, 4, 10, 16, 31, 32, 40, 41, 43, 62, 71, 76, 94, 95, 97, 98, 121, 142, 158, 163, 164, 166, 179, 188, 208, 211, 214, 227, 229, 259, 260, 265, 284, 301, 313, 317, 320, 328, 331, 340, 352, 355, 356, 365, 380, 382, 386, 392, 397, 401, 418, 424, 425, 431, 436, 439
Offset: 1

Views

Author

Keywords

Comments

This is the sequence of indices of prime numbers in A171613.
The Ulam spiral for this sequence is a near-perfect line y=-x (see links).

Examples

			a(12)=76 because 76^2=5776, and 5776+(5+7+7+6)=5801, which is prime.
		

Crossrefs

Cf. A048521.
Cf. numbers of the form n^2+sum-of-digits(n^2) A171613, and subsets A171614, A171615.
Cf. A062028.

Programs

  • R
    library(gmp); digsum<-function(x) sum(as.numeric(unlist(strsplit(as.character(x),split=""))))
    ans=as.bigz(rep(0,100)); n=1; i=as.bigz(1)
    while(n<=100) {
    if(isprime((w=i^2+digsum(i^2)))) ans[(n=n+1)-1]=i
    i=i+1
    }; ans
Showing 1-4 of 4 results.