cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A307735 Integers k such that if m = k + A003132(k) then k = m - A003132(m).

Original entry on oeis.org

0, 9, 205, 212, 217, 366, 457, 663, 1314, 1315, 1348, 1672, 1742, 1792, 1797, 2005, 2012, 2017, 2129, 2201, 2208, 2213, 2216, 2305, 2404, 2405, 2465, 2564, 2565, 2671, 2741, 2748, 2789, 2829, 3114, 3115, 3205, 3303, 3306, 3394, 3436, 3475, 3696, 3819, 4204, 4205, 4245, 4347, 4475, 4542, 4629, 4647, 4688
Offset: 1

Views

Author

Antonio Roldán, Apr 25 2019

Keywords

Comments

A003132(n) is the sum of the squares of the digits of n.

Examples

			205 is in the sequence because 205 + 2^2 + 0^2 + 5^2 = 234 and 234 - 2^2 - 3^2 - 4^2 = 205.
		

Crossrefs

Programs

  • Mathematica
    sod2[n_] := Total @ (IntegerDigits[n]^2); aQ[n_] := sod2[n + (s=sod2[n])] == s; Select[Range[0, 4700], aQ] (* Amiram Eldar, Jul 03 2019 *)
  • PARI
    for(i = 0 , 5000 , a = i + norml2(digits(i)) ; b = a - norml2(digits(a)) ; if(i == b , print1(i , ", ")))

A225065 Numbers of the form n^2 plus the sum of squared digits of n^2.

Original entry on oeis.org

2, 20, 53, 54, 81, 90, 101, 116, 127, 146, 177, 258, 287, 314, 321, 353, 407, 416, 438, 474, 580, 639, 686, 690, 797, 863, 913, 922, 981, 1045, 1079, 1219, 1235, 1259, 1418, 1493, 1496, 1552, 1637, 1783, 1866, 2011, 2058, 2063, 2158, 2298, 2333, 2422, 2529
Offset: 1

Views

Author

Keywords

Comments

Note that consecutive terms are not necessarily generated by consecutive values of n.
It appears that 146 is the only term that can be generated by two values of n (7 and 9). There are no other duplicates in the first 10000 terms.

Examples

			For n=11: 11^2=121; 121 + 1^2 + 2^2 + 1^2 = 127.
		

Crossrefs

Programs

  • R
    sort(unique((1:101)^2+sapply((1:101)^2,function(x) sum(as.numeric(unlist(strsplit(as.character(x),split="")))^2))))

A225051 Numbers of the form x^3 + SumOfCubedDigits(x).

Original entry on oeis.org

0, 2, 16, 54, 128, 250, 432, 686, 1024, 1458, 1001, 1333, 1737, 2225, 2809, 3501, 4313, 5257, 6345, 7589, 8008, 9270, 10664, 12202, 13896, 15758, 17800, 20034, 22472, 25126, 27027, 29819, 32803, 35991, 39395, 43027, 46899, 51023, 55411, 60075, 64064, 68986
Offset: 0

Views

Author

Jonathan Vos Post, Apr 25 2013

Keywords

Comments

This is to cubes A000578 as A209303 is to squares A000290.

Examples

			a(1) = 1^3 + 1^3 = 2; a(10) = 10^3 + (1^3 + 0^3) = 1000 + 1.
		

Crossrefs

Programs

  • Mathematica
    Table[n^3 + Total[IntegerDigits[n]^3], {n, 0, 50}] (* T. D. Noe, Apr 26 2013 *)

Formula

a(n) = A000578(n) + A055012(n).
Showing 1-3 of 3 results.