A171637 Triangle read by rows in which row n lists the distinct primes of the distinct decompositions of 2n into unordered sums of two primes.
2, 3, 3, 5, 3, 5, 7, 5, 7, 3, 7, 11, 3, 5, 11, 13, 5, 7, 11, 13, 3, 7, 13, 17, 3, 5, 11, 17, 19, 5, 7, 11, 13, 17, 19, 3, 7, 13, 19, 23, 5, 11, 17, 23, 7, 11, 13, 17, 19, 23, 3, 13, 19, 29, 3, 5, 11, 17, 23, 29, 31, 5, 7, 13, 17, 19, 23, 29, 31, 7, 19, 31, 3, 11, 17, 23, 29, 37, 5, 11
Offset: 2
Examples
a(2)=2 because for row 2: 2*2=2+2; a(3)=3 because for row 3: 2*3=3+3; a(4)=3 and a(5)=5 because for row 4: 2*4=3+5; a(6)=3, a(7)=5 and a(8)=7 because for row 5: 2*5=3+7=5+5. The table starts: 2; 3; 3,5; 3,5,7; 5,7; 3,7,11; 3,5,11,13; 5,7,11,13; 3,7,13,17; 3,5,11,17,19; 5,7,11,13,17,19; 3,7,13,19,23; 5,11,17,23; 7,11,13,17,19,23; 3,13,19,29; 3,5,11,17,23,29,31; As an irregular square array [_Jason Kimberley_, Jul 08 2012]: 3 . 3 . 3 . . . 3 . 3 . . . 3 . 3 . . . . . . . . . . . . . . . . 5 . 5 . 5 . . . 5 . 5 . . . 5 . . . . . . . . . . . . . . 7 . 7 . 7 . . . 7 . 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11. 11. 11. . . 11 . . . . . . . . 13. 13. 13. . . . . . . . . . . . . . . . . 17. 17 . . 19
Links
Crossrefs
Programs
-
Haskell
a171637 n k = a171637_tabf !! (n-2) !! (k-1) a171637_tabf = map a171637_row [2..] a171637_row n = reverse $ filter ((== 1) . a010051) $ map (2 * n -) $ takeWhile (<= 2 * n) a000040_list -- Reinhard Zumkeller, Mar 03 2014
-
Mathematica
Table[ps = Prime[Range[PrimePi[2*n]]]; Select[ps, MemberQ[ps, 2*n - #] &], {n, 2, 50}] (* T. D. Noe, Jan 27 2012 *)
Extensions
Keyword:tabl replaced by tabf, arbitrarily defined a(1) removed and entries checked by R. J. Mathar, May 22 2010
Definition clarified by N. J. A. Sloane, May 23 2010
Comments