A171647 a(1) = 1; for n > 1, a(n) = 2*a(n-1) if n is even, a(n) = ((n+1)/(n-1))*a(n-1) if n is odd.
1, 2, 4, 8, 12, 24, 32, 64, 80, 160, 192, 384, 448, 896, 1024, 2048, 2304, 4608, 5120, 10240, 11264, 22528, 24576, 49152, 53248, 106496, 114688, 229376, 245760, 491520, 524288, 1048576, 1114112, 2228224, 2359296, 4718592, 4980736, 9961472
Offset: 1
Examples
a(6) = 2*a(5) = 2*12 = 24; a(7) = (8/6)*a(6) = (4/3)*24 = 32.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-4).
Programs
-
Magma
[ n eq 1 select 1 else IsEven(n) select 2*Self(n-1) else ((n+1)/(n-1))*Self(n-1): n in [1..40] ];
-
Mathematica
a[n_] := If[ OddQ@ n, (n + 1)/(n - 1) a[n - 1] , 2 a[n - 1]]; a[1] = 1; Array[a, 38] LinearRecurrence[{0,4,0,-4},{1,2,4,8},40] (* Harvey P. Dale, Jan 14 2015 *)
Formula
From R. J. Mathar, Dec 06 2010: (Start)
a(n) = 4*a(n-2) - 4*a(n-4).
G.f.: x*(1+2*x)/(-1+2*x^2)^2. (End)
a(n) = (2*n - (-1)^n+1)*2^((2*n + (-1)^n - 9)/4). - Bruno Berselli, Dec 07 2010
G.f.: G(0), where G(k) = 1 + 2*x*(k+1)/(k + 1 - x*(k+1)*(k+2)/(x*(k+2) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 27 2013
Sum_{n>=1} 1/a(n) = 3*log(2) (A016631). - Amiram Eldar, Aug 27 2022
Comments