cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171647 a(1) = 1; for n > 1, a(n) = 2*a(n-1) if n is even, a(n) = ((n+1)/(n-1))*a(n-1) if n is odd.

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 32, 64, 80, 160, 192, 384, 448, 896, 1024, 2048, 2304, 4608, 5120, 10240, 11264, 22528, 24576, 49152, 53248, 106496, 114688, 229376, 245760, 491520, 524288, 1048576, 1114112, 2228224, 2359296, 4718592, 4980736, 9961472
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

a(n) is the number of subsets of {1,2,...,n} that contain exactly one odd number. For example, for n=5, a(5)=12 and the 12 subsets are {1}, {3}, {5}, {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,4}, {2,3,4}, {2,4,5}. - Enrique Navarrete, Dec 15 2019
2*a(n-1) is the number of subsets of {1,2,...,n} that contain exactly one even number. For example, for n=5, 2*a(4)=16 and the 16 subsets are {2}, {4}, {1,2}, {1,4}, {2,3}, {2,5}, {3,4}, {4,5}, {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}, {1,2,3,5}, {1,3,4,5}. - Enrique Navarrete, Dec 16 2019

Examples

			a(6) = 2*a(5) = 2*12 = 24;
a(7) = (8/6)*a(6) = (4/3)*24 = 32.
		

Crossrefs

Cf. A001787, A036289 (bisections).
Cf. A016631.

Programs

  • Magma
    [ n eq 1 select 1 else IsEven(n) select 2*Self(n-1) else ((n+1)/(n-1))*Self(n-1): n in [1..40] ];
  • Mathematica
    a[n_] := If[ OddQ@ n, (n + 1)/(n - 1) a[n - 1] , 2 a[n - 1]]; a[1] = 1; Array[a, 38]
    LinearRecurrence[{0,4,0,-4},{1,2,4,8},40] (* Harvey P. Dale, Jan 14 2015 *)

Formula

From R. J. Mathar, Dec 06 2010: (Start)
a(n) = 4*a(n-2) - 4*a(n-4).
G.f.: x*(1+2*x)/(-1+2*x^2)^2. (End)
a(n) = (2*n - (-1)^n+1)*2^((2*n + (-1)^n - 9)/4). - Bruno Berselli, Dec 07 2010
G.f.: G(0), where G(k) = 1 + 2*x*(k+1)/(k + 1 - x*(k+1)*(k+2)/(x*(k+2) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 27 2013
Sum_{n>=1} 1/a(n) = 3*log(2) (A016631). - Amiram Eldar, Aug 27 2022