A171682 Number of compositions of n with the smallest part in the first position.
1, 2, 3, 6, 10, 20, 37, 72, 140, 275, 540, 1069, 2118, 4206, 8365, 16659, 33204, 66231, 132179, 263913, 527119, 1053113, 2104428, 4205987, 8407382, 16807410, 33603024, 67187111, 134343790, 268638648, 537198557, 1074270342, 2148336463, 4296343787, 8592156886, 17183457812, 34365534564
Offset: 1
Examples
The a(6)=20 such compositions of 6 are [ 1] [ 1 1 1 1 1 1 ] [ 2] [ 1 1 1 1 2 ] [ 3] [ 1 1 1 2 1 ] [ 4] [ 1 1 1 3 ] [ 5] [ 1 1 2 1 1 ] [ 6] [ 1 1 2 2 ] [ 7] [ 1 1 3 1 ] [ 8] [ 1 1 4 ] [ 9] [ 1 2 1 1 1 ] [10] [ 1 2 1 2 ] [11] [ 1 2 2 1 ] [12] [ 1 2 3 ] [13] [ 1 3 1 1 ] [14] [ 1 3 2 ] [15] [ 1 4 1 ] [16] [ 1 5 ] [17] [ 2 2 2 ] [18] [ 2 4 ] [19] [ 3 3 ] [20] [ 6 ] - _Joerg Arndt_, Jan 01 2013.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A079500.
Programs
-
Mathematica
nn=37;Drop[CoefficientList[Series[Sum[x^i/(1-x^i/(1-x)),{i,1,nn}],{x,0,nn}],x],1] (* Geoffrey Critzer, Mar 12 2013 *)
-
PARI
N=66; x='x+O('x^N); gf= (1-x) * sum(k=1,N, x^k/(1-x-x^k) ); Vec(gf) /* Joerg Arndt, Jan 01 2013 */
Formula
G.f.: (1-x) * Sum_{k>=1} x^k/(1-x-x^k). [Joerg Arndt, Jan 01 2013]
a(n) ~ 2^(n-2). - Vaclav Kotesovec, Sep 10 2014
G.f.: Sum_{n>=1} q^n/(1-Sum_{k>=n} q^k). - Joerg Arndt, Jan 03 2024
Extensions
Added more terms, Joerg Arndt, Jan 01 2013
Comments