cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171682 Number of compositions of n with the smallest part in the first position.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 37, 72, 140, 275, 540, 1069, 2118, 4206, 8365, 16659, 33204, 66231, 132179, 263913, 527119, 1053113, 2104428, 4205987, 8407382, 16807410, 33603024, 67187111, 134343790, 268638648, 537198557, 1074270342, 2148336463, 4296343787, 8592156886, 17183457812, 34365534564
Offset: 1

Views

Author

Vladeta Jovovic, Dec 15 2009

Keywords

Comments

First differences of A097939.

Examples

			The a(6)=20 such compositions of 6 are
[ 1]  [ 1 1 1 1 1 1 ]
[ 2]  [ 1 1 1 1 2 ]
[ 3]  [ 1 1 1 2 1 ]
[ 4]  [ 1 1 1 3 ]
[ 5]  [ 1 1 2 1 1 ]
[ 6]  [ 1 1 2 2 ]
[ 7]  [ 1 1 3 1 ]
[ 8]  [ 1 1 4 ]
[ 9]  [ 1 2 1 1 1 ]
[10]  [ 1 2 1 2 ]
[11]  [ 1 2 2 1 ]
[12]  [ 1 2 3 ]
[13]  [ 1 3 1 1 ]
[14]  [ 1 3 2 ]
[15]  [ 1 4 1 ]
[16]  [ 1 5 ]
[17]  [ 2 2 2 ]
[18]  [ 2 4 ]
[19]  [ 3 3 ]
[20]  [ 6 ]
- _Joerg Arndt_, Jan 01 2013.
		

Crossrefs

Cf. A079500.

Programs

  • Mathematica
    nn=37;Drop[CoefficientList[Series[Sum[x^i/(1-x^i/(1-x)),{i,1,nn}],{x,0,nn}],x],1]  (* Geoffrey Critzer, Mar 12 2013 *)
  • PARI
    N=66; x='x+O('x^N);
    gf= (1-x) * sum(k=1,N, x^k/(1-x-x^k) );
    Vec(gf)
    /* Joerg Arndt, Jan 01 2013 */

Formula

G.f.: (1-x) * Sum_{k>=1} x^k/(1-x-x^k). [Joerg Arndt, Jan 01 2013]
a(n) ~ 2^(n-2). - Vaclav Kotesovec, Sep 10 2014
G.f.: Sum_{n>=1} q^n/(1-Sum_{k>=n} q^k). - Joerg Arndt, Jan 03 2024

Extensions

Added more terms, Joerg Arndt, Jan 01 2013