cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171692 Triangle read by rows: absolute values of odd-numbered rows of A159041.

Original entry on oeis.org

1, 1, 10, 1, 1, 56, 246, 56, 1, 1, 246, 4047, 11572, 4047, 246, 1, 1, 1012, 46828, 408364, 901990, 408364, 46828, 1012, 1, 1, 4082, 474189, 9713496, 56604978, 105907308, 56604978, 9713496, 474189, 4082, 1, 1, 16368, 4520946, 193889840, 2377852335, 10465410528, 17505765564, 10465410528, 2377852335, 193889840, 4520946, 16368, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 15 2009

Keywords

Examples

			Irregular triangle begins as:
  1;
  1,   10,     1;
  1,   56,   246,     56,      1;
  1,  246,  4047,  11572,   4047,    246,     1;
  1, 1012, 46828, 408364, 901990, 408364, 46828, 1012, 1;
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    f[x_, y_, m_]:= 2^(m+1)*Exp[2^m*x]/((1 -y*Exp[x])*(1 +(2^(m+1) -1)*Exp[2^m*x]));
    Table[CoefficientList[SeriesCoefficient[Series[((1-y)^(n+1)/(2*y))*n!*f[x, y, 0], {x,0,30}], n], y], {n, 2, 20, 2}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
    (* Second program *)
    A008292[n_, k_]:= Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j,0,k}];
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], T[n, k-1] + (-1)^k*A008292[n+2, k+1], T[n, n-k] ]]; (* T = A159041 *)
    A171692[n_, k_]:= Abs[T[2*n, k]];
    Table[A171692[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Mar 18 2022 *)
  • Sage
    def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) )
    @CachedFunction
    def A159041(n,k):
        if (k==0 or k==n): return 1
        elif (k <= (n//2)): return A159041(n,k-1) + (-1)^k*A008292(n+2,k+1)
        else: return A159041(n,n-k)
    def A171692(n,k): return abs( A159041(2*n, k) )
    flatten([[A171692(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022

Formula

T(n, k) = coefficients of (g(x, y)), where g(x, y) = n! * ((1-y)^(n+1)/(2*y)) * f(x, y, 0), with f(x, y, m) = 2^(m+1)*exp(2^m*x)/((1 -y*exp(x))*(1 +(2^(m+1) -1)*exp(2^m*x))).
From G. C. Greubel, Mar 18 2022: (Start)
T(n, k) = abs( A159041(2*n, k) ).
T(n, n-k) = T(n, k). (End)

Extensions

Edited by N. J. A. Sloane, May 10 2013
More terms from Jean-François Alcover, Feb 14 2014
Edited by G. C. Greubel, Mar 18 2022