A171692 Triangle read by rows: absolute values of odd-numbered rows of A159041.
1, 1, 10, 1, 1, 56, 246, 56, 1, 1, 246, 4047, 11572, 4047, 246, 1, 1, 1012, 46828, 408364, 901990, 408364, 46828, 1012, 1, 1, 4082, 474189, 9713496, 56604978, 105907308, 56604978, 9713496, 474189, 4082, 1, 1, 16368, 4520946, 193889840, 2377852335, 10465410528, 17505765564, 10465410528, 2377852335, 193889840, 4520946, 16368, 1
Offset: 0
Examples
Irregular triangle begins as: 1; 1, 10, 1; 1, 56, 246, 56, 1; 1, 246, 4047, 11572, 4047, 246, 1; 1, 1012, 46828, 408364, 901990, 408364, 46828, 1012, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Mathematica
(* First program *) f[x_, y_, m_]:= 2^(m+1)*Exp[2^m*x]/((1 -y*Exp[x])*(1 +(2^(m+1) -1)*Exp[2^m*x])); Table[CoefficientList[SeriesCoefficient[Series[((1-y)^(n+1)/(2*y))*n!*f[x, y, 0], {x,0,30}], n], y], {n, 2, 20, 2}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *) (* Second program *) A008292[n_, k_]:= Sum[(-1)^j*(k-j)^n*Binomial[n+1, j], {j,0,k}]; T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k<=Floor[n/2], T[n, k-1] + (-1)^k*A008292[n+2, k+1], T[n, n-k] ]]; (* T = A159041 *) A171692[n_, k_]:= Abs[T[2*n, k]]; Table[A171692[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Mar 18 2022 *)
-
Sage
def A008292(n,k): return sum( (-1)^j*(k-j)^n*binomial(n+1,j) for j in (0..k) ) @CachedFunction def A159041(n,k): if (k==0 or k==n): return 1 elif (k <= (n//2)): return A159041(n,k-1) + (-1)^k*A008292(n+2,k+1) else: return A159041(n,n-k) def A171692(n,k): return abs( A159041(2*n, k) ) flatten([[A171692(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
Formula
T(n, k) = coefficients of (g(x, y)), where g(x, y) = n! * ((1-y)^(n+1)/(2*y)) * f(x, y, 0), with f(x, y, m) = 2^(m+1)*exp(2^m*x)/((1 -y*exp(x))*(1 +(2^(m+1) -1)*exp(2^m*x))).
From G. C. Greubel, Mar 18 2022: (Start)
T(n, k) = abs( A159041(2*n, k) ).
T(n, n-k) = T(n, k). (End)
Extensions
Edited by N. J. A. Sloane, May 10 2013
More terms from Jean-François Alcover, Feb 14 2014
Edited by G. C. Greubel, Mar 18 2022