A171744 a(n) is the smallest exponent such that prime(n)^k is pandigital in base 10.
68, 39, 19, 18, 23, 22, 14, 17, 14, 12, 11, 13, 11, 13, 12, 13, 11, 14, 10, 15, 14, 13, 9, 11, 13, 9, 15, 14, 13, 12, 11, 15, 10, 7, 12, 9, 12, 10, 11, 8, 11, 8, 12, 11, 13, 13, 10, 12, 10, 8, 11, 12, 9, 7, 6, 7, 8, 12, 8, 8, 7, 7, 10, 9, 9, 6, 9, 10, 9, 10
Offset: 1
Examples
2^68 = 295147905179352825856 (21 digits), 3^39 = 4052555153018976267 (19) 5^19 = 19073486328125 (14), 7^18 = 1628413597910449 (16), 11^23 = 895430243255237372246531 (24) 13^22 = 3211838877954855105157369 (25), 17^14 = 168377826559400929 (18) 19^17 = 5480386857784802185939 (22), 23^14 = 11592836324538749809 (20) 29^12 = 353814783205469041 (18), 31^11 = 25408476896404831 (17) 37^13 = 243569224216081305397 (21), 41^11 = 550329031716248441 (18) 43^13 = 1718264124282290785243 (22), 47^12 = 116191483108948578241 (21) 53^13 = 26036721925606486195973 (23), 59^11 = 30155888444737842659 (20) 61^14 = 9876832533361318095112441 (25), 67^10 = 1822837804551761449 (19) 71^15 = 5873205959385493353867330551 (28), 73^14 = 122045014039746588673695409 (23) 79^13 = 4668229371502258117133839 (25), 83^9 = 186940255267540403 (18) 89^11 = 2775173073766990340489 (22), 97^13 = 67302709016557486028618977 (26) 101^9 = 1093685272684360901 (19), 103^15 = 1557967416600764580522382952407 (31) 107^14 = 25785341502012466393542552649 (29), 109^13 = 306580461214335498944273629 (27) 113^12 = 4334523100191686738306881 (25), 127^11 = 138624799340320978519423 (24)
References
- E.I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig-Jena-Berlin, 2. Auflage 1982.
- Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
sepan[n_]:=Module[{p=Prime[n],k=1},While[Min[DigitCount[p^k]]==0,k++];k]; Array[sepan,100] (* Harvey P. Dale, Aug 03 2019 *)
-
PARI
a(n) = {my(k=1, p=prime(n)); while(#Set(digits(p^k))<10, k++); k; } \\ Jinyuan Wang, Aug 14 2020
Extensions
Edited by Charles R Greathouse IV, Aug 02 2010
Corrected and extended by Harvey P. Dale, Aug 03 2019
Comments