cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171744 a(n) is the smallest exponent such that prime(n)^k is pandigital in base 10.

Original entry on oeis.org

68, 39, 19, 18, 23, 22, 14, 17, 14, 12, 11, 13, 11, 13, 12, 13, 11, 14, 10, 15, 14, 13, 9, 11, 13, 9, 15, 14, 13, 12, 11, 15, 10, 7, 12, 9, 12, 10, 11, 8, 11, 8, 12, 11, 13, 13, 10, 12, 10, 8, 11, 12, 9, 7, 6, 7, 8, 12, 8, 8, 7, 7, 10, 9, 9, 6, 9, 10, 9, 10
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 17 2009

Keywords

Comments

A pandigital number is an integer that in a given base has among its significant digits each digit used in the base at least once.

Examples

			2^68 = 295147905179352825856 (21 digits), 3^39 = 4052555153018976267 (19)
5^19 = 19073486328125 (14), 7^18 = 1628413597910449 (16), 11^23 = 895430243255237372246531 (24)
13^22 = 3211838877954855105157369 (25), 17^14 = 168377826559400929 (18)
19^17 = 5480386857784802185939 (22), 23^14 = 11592836324538749809 (20)
29^12 = 353814783205469041 (18), 31^11 = 25408476896404831 (17)
37^13 = 243569224216081305397 (21), 41^11 = 550329031716248441 (18)
43^13 = 1718264124282290785243 (22), 47^12 = 116191483108948578241 (21)
53^13 = 26036721925606486195973 (23), 59^11 = 30155888444737842659 (20)
61^14 = 9876832533361318095112441 (25), 67^10 = 1822837804551761449 (19)
71^15 = 5873205959385493353867330551 (28), 73^14 = 122045014039746588673695409 (23)
79^13 = 4668229371502258117133839 (25), 83^9 = 186940255267540403 (18)
89^11 = 2775173073766990340489 (22), 97^13 = 67302709016557486028618977 (26)
101^9 = 1093685272684360901 (19), 103^15 = 1557967416600764580522382952407 (31)
107^14 = 25785341502012466393542552649 (29), 109^13 = 306580461214335498944273629 (27)
113^12 = 4334523100191686738306881 (25), 127^11 = 138624799340320978519423 (24)
		

References

  • E.I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig-Jena-Berlin, 2. Auflage 1982.
  • Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983.

Crossrefs

Programs

  • Mathematica
    sepan[n_]:=Module[{p=Prime[n],k=1},While[Min[DigitCount[p^k]]==0,k++];k]; Array[sepan,100] (* Harvey P. Dale, Aug 03 2019 *)
  • PARI
    a(n) = {my(k=1, p=prime(n)); while(#Set(digits(p^k))<10, k++); k; } \\ Jinyuan Wang, Aug 14 2020

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010
Corrected and extended by Harvey P. Dale, Aug 03 2019