cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333965 Numbers k such that k * A171744(k) increases to a record.

Original entry on oeis.org

1, 2, 5, 6, 8, 12, 14, 16, 18, 20, 25, 27, 32, 43, 45, 46, 52, 58, 70, 71, 77, 81, 91, 105, 109, 149, 158, 176, 240, 247, 297, 303, 401, 421, 431, 531, 536, 542, 543, 608, 617, 622, 640, 643, 667, 677, 685, 713, 720, 748, 751, 1028, 1085, 1203, 1282, 1320, 1466, 1600
Offset: 1

Views

Author

David A. Corneth, Aug 14 2020

Keywords

Examples

			6 is in the sequence as A171744(6) = 22 and 6*22 = 132. This is a record; no n less than 6 produces a product of at least 132.
		

Crossrefs

Cf. A171744.

Programs

  • Maple
    f:= proc(p) local t,k;
        t:= 1;
        for k from 1 do
          t:= t*p;
          if nops(convert(convert(t,base,10),set))=10 then return k fi;
        od
    end proc:
    R:= NULL: m:= 0: p:= 1: count:= 0:
    for k from 1 while count < 100 do
      p:= nextprime(p);
      v:= k*f(p);
      if v > m then
        R:= R,k;
        m:= v;
        count:= count+1
      fi
    od:
    R; # Robert Israel, Aug 05 2024
  • Mathematica
    With[{s = Array[Block[{p = Prime@ #, k = 1}, While[Min@ DigitCount[p^k] == 0, k++]; k #] &, 1600]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, Aug 21 2020 *)
  • PARI
    f(n) = {my(k=1, p=prime(n)); while(#Set(digits(p^k))<10, k++); k; } \\ A171744
    lista(nn) = {my(m=0, x); for (n=1, nn, x = n*f(n); if (x >m, m = x; print1(n, ", ")););} \\ Michel Marcus, Jan 26 2021

A178303 Smallest multiple of 13 such that decimals digits 1, ..., k (k = 1, ..., 9) and 0 appear in any order.

Original entry on oeis.org

13, 182, 312, 2314, 14235, 125346, 1234675, 12348765, 123456879, 1023457968
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 24 2010, May 26 2010

Keywords

Comments

Divisibility of a number N by 13: add the digits of N in alternate blocks of three from right to left, then subtract the two sums:
9th term: 123 456 879: (123 + 879) - 456 = 546, 546: 54 + (6 * 4) = 78 = 6 * 13.

Examples

			         1 * 13 =         13
        14 * 13 =        182
        24 * 13 =        312
       178 * 13 =       2314
      1095 * 13 =      14235
      9642 * 13 =     125346
     94975 * 13 =    1234675
    949905 * 13 =   12348765
   9496683 * 13 =  123456879
  78727536 * 13 = 1023457968
		

References

  • Faith Javane, Zahlenmystik: Das Handbuch der Numerologie, Goldmann - Arkana, Frankfurt, 1995
  • Helmut Kracke, Mathe - musische Knobelisken. Tüfteleien für Tüftler und Laien, Dümmler, Bonn, 1982
  • Hugo Steinhaus, Kaleidoskop der Mathematik, Deutscher Verlag der Wissenschaften, Berlin, 1959

Crossrefs

A360656 Least k such that the decimal representation of 2^k contains all possible n-digit strings.

Original entry on oeis.org

68, 975, 16963, 239697, 2994863
Offset: 1

Views

Author

Hans Havermann, Feb 15 2023

Keywords

Examples

			2^68 = 295147905179352825856 is the least power of 2 containing all ten decimal digits, so a(1) = 68 = A171744(1).
2^975 is the least power of 2 containing all 100 two-digit strings, so a(2) = 975.
		

Crossrefs

Programs

  • Python
    def a(n, starte=0):
        e, p2, t = starte, 2**starte, 10**n
        while True:
            s2, ss = str(p2), set()
            for i in range(len(s2)-n+1):
                ss.add(s2[i:i+n])
                if len(ss) == t:
                    return e
            e += 1
            p2 *= 2
    print([a(n) for n in range(1, 4)]) # Michael S. Branicky, Feb 22 2023
Showing 1-3 of 3 results.