A171806 Number of 5 X 5 permutation matrices such that the n-th matrix power is the least nonnegative power that gives the identity matrix.
1, 25, 20, 30, 24, 20
Offset: 1
Examples
a(1) = 1 because there is only one matrix whose first power is the identity matrix (this is the identity matrix itself).
Crossrefs
Row n=5 of A057731.
Programs
-
Mathematica
tab = {0, 0, 0, 0, 0, 0}; per = Permutations[{1, 2, 3, 4, 5}]; zeromat = {}; Do[ AppendTo[zeromat, Table[0, {n, 1, 5}]], {m, 1, 5}]; unit = IdentityMatrix[5]; s5 = {}; Do[s = zeromat; Do[s[[m]][[per[[n]][[m]]]] = 1, {m, 1, 5}]; AppendTo[s5, s], {n, 1, 120}]; Do[ If[MatrixPower[s5[[n]], 1] == unit, tab[[1]] = tab[[1]] + 1, If[MatrixPower[s5[[n]], 2] == unit, tab[[2]] = tab[[2]] + 1, If[MatrixPower[s5[[n]], 3] == unit, tab[[3]] = tab[[3]] + 1, If[MatrixPower[s5[[n]], 4] == unit, tab[[4]] = tab[[4]] + 1, If[MatrixPower[s5[[n]], 5] == unit, tab[[5]] = tab[[5]] + 1, If[MatrixPower[s5[[n]], 6] == unit, tab[[6]] = tab[[6]] + 1]]]]]], {n, 1, 120}]; tab
Extensions
Name edited and terms corrected by Alois P. Heinz, Mar 30 2020
Comments