cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171835 Partial sums of numbers congruent to {3, 4, 5, 6} mod 8 (A047425).

Original entry on oeis.org

3, 7, 12, 18, 29, 41, 54, 68, 87, 107, 128, 150, 177, 205, 234, 264, 299, 335, 372, 410, 453, 497, 542, 588, 639, 691, 744, 798, 857, 917, 978, 1040, 1107, 1175, 1244, 1314, 1389, 1465, 1542, 1620, 1703, 1787, 1872, 1958, 2049, 2141, 2234, 2328, 2427, 2527
Offset: 1

Views

Author

Jaroslav Krizek, Dec 19 2009

Keywords

Crossrefs

Cf. A047425.

Programs

  • Magma
    C := ComplexField(); [Round((4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4): n in [1..100]]; // G. C. Greubel, Sep 04 2018
  • Maple
    A171835:=n->(4*n^2+2*n+5-2*I^(-n)-2*I^n-I^(2*n))/4: seq(A171835(n), n=1..80); # Wesley Ivan Hurt, Jun 04 2016
  • Mathematica
    CoefficientList[Series[(3 + x + x^2 + x^3 + 2*x^4)/((1 - x)^3*(1 + x + x^2 + x^3)), {x, 0, 80}], x] (* Wesley Ivan Hurt, Jun 04 2016 *)
    Table[(4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4, {n, 1, 100}] (* G. C. Greubel, Sep 04 2018 *)
  • PARI
    vector(100, n, (4*n^2 +2*n +5 -2*(1 +(-1)^n)*I^n -(-1)^n)/4) \\ G. C. Greubel, Sep 04 2018
    

Formula

a(n) = Sum_{i=1..n} A047425(i).
From Wesley Ivan Hurt, Jun 04 2016: (Start)
G.f.: x*(3+x+x^2+x^3+2*x^4)/((1-x)^3*(1+x+x^2+x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6.
a(n) = (4*n^2+2*n+5-2*I^(-n)-2*I^n-I^(2*n))/4 where I=sqrt(-1). (End)