cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A079427 Least m > n having the same number of divisors as n, a(1) = 1.

Original entry on oeis.org

1, 3, 5, 9, 7, 8, 11, 10, 25, 14, 13, 18, 17, 15, 21, 81, 19, 20, 23, 28, 22, 26, 29, 30, 49, 27, 33, 32, 31, 40, 37, 44, 34, 35, 38, 100, 41, 39, 46, 42, 43, 54, 47, 45, 50, 51, 53, 80, 121, 52, 55, 63, 59, 56, 57, 66, 58, 62, 61, 72, 67, 65, 68, 729, 69, 70, 71, 75, 74, 78, 73
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 08 2003

Keywords

Comments

tau(a(n)) = tau(n) and tau(i) <> tau(n), n < i < a(n) (tau = A000005);

Examples

			Sets of divisors for n=10,11,12,13 and 14: D(10)={1,2,5,10}, D(11)={1,11}, D(12)={1,2,3,4,6,12}, D(13)={1,13}, D(14)={1,2,7,14}: therefore a(10)=14 (#D(10)=#D(14)).
		

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{m = n+1, d=DivisorSigma[0, n]}, While[DivisorSigma[0, m] != d, m++]; m]; Array[a, 100] (* Amiram Eldar, Feb 03 2020 *)
  • PARI
    a(n) = if (n==1, 1, my(m=n+1, nd=numdiv(n)); while(numdiv(m) != nd, m++); m); \\ Michel Marcus, Sep 14 2021
    
  • Python
    from sympy import divisors
    def a(n):
        if n == 1: return 1
        divisorsn, m = len(divisors(n)), n + 1
        while len(divisors(m)) != divisorsn: m += 1
        return m
    print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Sep 14 2021

Formula

a(A000040(k)) = A079428(A000040(k)) = A000040(k+1), as A000005(p)=2 for primes p.
a(n) = A171937(n) + n. - Ridouane Oudra, Sep 14 2021

A377319 a(n) is the smallest positive integer k such that n + k and n - k have the same number of divisors.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 3, 3, 1, 6, 3, 2, 3, 6, 1, 1, 3, 2, 9, 5, 2, 6, 3, 3, 6, 12, 1, 4, 6, 4, 1, 5, 2, 2, 6, 2, 3, 1, 1, 8, 3, 2, 11, 3, 4, 7, 3, 1, 6, 2, 3, 1, 1, 4, 7, 9, 1, 4, 7, 4, 3, 6, 5, 2, 2, 2, 3, 6, 1, 4, 4, 4, 3, 6, 4, 9, 6, 2, 5, 5, 2, 8, 1, 3, 3, 2, 3
Offset: 4

Views

Author

Felix Huber, Nov 17 2024

Keywords

Comments

If the strong Goldbach conjecture is true, that every even number >= 8 is the sum of two distinct primes, then a positive integer k <= A082467(n) exists for n >= 4.

Examples

			a(8) = 2 because 10 and 6 have both four divisors. 9 and 7 have a different number of divisors.
		

Crossrefs

Programs

  • Maple
    A377319:=proc(n)
       local k;
       for k to n-1 do
          if NumberTheory:-tau(n+k)=NumberTheory:-tau(n-k) then
             return k
          fi
       od;
    end proc;
    seq(A377319(n),n=4..90);
  • Mathematica
    A377319[n_] := Module[{k = 0}, While[DivisorSigma[0, ++k + n] != DivisorSigma[0, n - k]]; k];
    Array[A377319, 100, 4] (* Paolo Xausa, Dec 03 2024 *)
  • PARI
    a(n) = my(k=1); while (numdiv(n+k) != numdiv(n-k), k++); k; \\ Michel Marcus, Nov 17 2024

Formula

1 <= a(n) <= A082467(n).

A171936 Backwards van Eck transform of A000005.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 2, 2, 5, 2, 4, 0, 2, 4, 1, 0, 4, 6, 2, 2, 6, 1, 4, 0, 16, 4, 1, 8, 6, 6, 2, 4, 6, 1, 1, 0, 6, 3, 1, 10, 4, 2, 2, 12, 1, 7, 4, 0, 24, 5, 5, 2, 6, 12, 4, 2, 2, 1, 6, 0, 2, 4, 11, 0, 3, 10, 6, 5, 4, 4, 4, 12, 2, 5, 7, 1, 3, 8, 6, 32, 65, 5, 4, 12, 3, 1, 1, 10, 6, 6, 4, 16, 2, 1, 1, 6, 8, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 24 2010

Keywords

Crossrefs

Cf. A171937.

A275479 Least positive k such that d(n) divides d(n+k) (d = A000005).

Original entry on oeis.org

1, 1, 2, 5, 1, 2, 1, 2, 3, 4, 1, 6, 1, 1, 6, 32, 1, 2, 1, 8, 1, 2, 1, 6, 3, 1, 3, 4, 1, 10, 1, 12, 1, 1, 3, 64, 1, 1, 1, 2, 1, 12, 1, 1, 5, 5, 1, 32, 1, 2, 3, 8, 1, 2, 1, 10, 1, 2, 1, 12, 1, 3, 5, 128, 1, 4, 1, 4, 1, 8, 1, 12, 1, 3, 1, 8, 1, 10, 1, 32, 31, 2, 1, 6, 1, 1, 1, 14, 1, 6, 2, 4, 1, 1, 1, 12, 1, 1, 9, 80
Offset: 1

Views

Author

Altug Alkan, Jul 29 2016

Keywords

Comments

a(A057922(n)) = 1. - Michel Marcus, Aug 01 2016

Examples

			a(10) = 4 because A000005(10) divides A000005(10+4).
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k = 1); while(numdiv(n+k) % numdiv(n) != 0, k++); k; }

Extensions

Data section extended up to a(100) by Antti Karttunen, Mar 02 2023
Showing 1-4 of 4 results.