cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171965 Partial sums of floor(n^2/6) (A056827).

Original entry on oeis.org

0, 0, 0, 1, 3, 7, 13, 21, 31, 44, 60, 80, 104, 132, 164, 201, 243, 291, 345, 405, 471, 544, 624, 712, 808, 912, 1024, 1145, 1275, 1415, 1565, 1725, 1895, 2076, 2268, 2472, 2688, 2916, 3156, 3409, 3675, 3955, 4249, 4557, 4879, 5216, 5568, 5936, 6320, 6720, 7136
Offset: 0

Views

Author

Mircea Merca, Nov 19 2010

Keywords

Comments

Quasipolynomial.

Examples

			a(5) = 7 = 0 + 0 + 0 + 1 + 2 + 4.
		

Crossrefs

Cf. A056827.

Programs

  • Magma
    [Round((2*n^3+3*n^2-12*n-6)/36): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    a(n):=round((2*n^3 +3*n^2 -12*n-6)/36)
  • Mathematica
    Accumulate[Floor[Range[0,50]^2/6]] (* Harvey P. Dale, Jul 30 2020 *)
  • PARI
    a(n)=(2*n^3+3*n^2-12*n+7)\36 \\ Charles R Greathouse IV, Jan 29 2012
    
  • Python
    a171965 = [0]
    for n in range(1, 60): a171965.append(a171965[-1] + n*n//6)
    print(a171965) # Gennady Eremin, Mar 13 2022

Formula

a(n) = Sum_{k=0..n} floor(k^2/6).
a(n) = round((2*n^3 + 3*n^2 - 12*n - 6)/36).
a(n) = round((4*n^3 + 6*n^2 - 24*n - 13)/72).
a(n) = floor((2*n^3 + 3*n^2 - 12*n + 7)/36).
a(n) = ceiling((2*n^3 + 3*n^2 - 12*n - 20)/36).
a(n) = a(n-6) + n^2 - 5*n + 7, n > 5.
G.f.: x^3*(1+x^2) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^4 ). - R. J. Mathar, Jan 28 2012