A171979 Number of partitions of n such that smaller parts do not occur more frequently than greater parts.
1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 19, 21, 30, 31, 42, 50, 62, 69, 91, 99, 126, 144, 175, 198, 246, 275, 331, 379, 452, 509, 612, 686, 811, 922, 1076, 1219, 1428, 1604, 1863, 2108, 2434, 2739, 3162, 3551, 4075, 4593, 5240, 5885, 6721, 7527, 8556, 9597, 10870
Offset: 0
Keywords
Examples
a(5) = #{5, 4+1, 3+2, 2+2+1, 5x1} = 5; a(6) = #{6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2, 2+2+1+1, 6x1} = 8; a(7) = #{7, 6+1, 5+2, 4+3, 4+2+1, 3+3+1, 2+2+2+1, 7x1} = 8; a(8) = #{8, 7+1, 6+2, 5+3, 5+2+1, 4+4, 4+3+1, 3+3+2, 3+3+1+1, 2+2+2+2, 2+2+2+1+1, 8x1} = 12.
Links
Crossrefs
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *) Table[Count[f[n], p_ /; m[p] == Count[p, Max[p]]], {n, 0, z}] (* this sequence *) Table[Count[f[n], p_ /; m[p] > Count[p, Max[p]]], {n, 0, z}] (* A240302 *) (* Clark Kimberling, Apr 04 2014 *) (* Second program: *) b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0], If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, If[k == -1, j, If[k == 0, 0, If[j > k, 0, k]]]], {j, 1, n/i}]]]; a[n_] := PartitionsP[n] - b[n, n, -1]; a /@ Range[0, 70] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz in A240302 *) Table[Length[Select[IntegerPartitions[n],MemberQ[Commonest[#],Max[#]]&]],{n,0,30}] (* Gus Wiseman, May 07 2023 *)
-
PARI
{ my(N=53, x='x+O('x^N)); my(gf=1+sum(i=1,N,sum(j=1,floor(N/i),x^(i*j)*prod(k=1,i-1,(1-x^(k*(j+1)))/(1-x^k))))); Vec(gf) } \\ John Tyler Rascoe, Mar 09 2024
Formula
a(n) = p(n,0,1,1) with p(n,i,j,k) = if k<=n then p(n-k,i,j+1,k) +p(n,max(i,j),1,k+1) else (if j0 then 0 else 1).
G.f.: 1 + Sum_{i, j>0} x^(i*j) * Product_{k=1..i-1} ((1 - x^(k*(j+1)))/(1 - x^k)). - John Tyler Rascoe, Mar 09 2024
Comments