A172045 a(n) = (9*n^4+10*n^3-3*n^2-4*n)/12.
0, 1, 17, 80, 240, 565, 1141, 2072, 3480, 5505, 8305, 12056, 16952, 23205, 31045, 40720, 52496, 66657, 83505, 103360, 126560, 153461, 184437, 219880, 260200, 305825, 357201, 414792, 479080, 550565, 629765, 717216, 813472, 919105, 1034705
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(9*n^4+10*n^3-3*n^2-4*n)/12: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
-
Mathematica
CoefficientList[Series[x (1 + 12 x + 5 x^2)/(1 - x)^5,{x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *) LinearRecurrence[{5,-10,10,-5,1},{0,1,17,80,240},40] (* Harvey P. Dale, Aug 25 2019 *)
Formula
a(n) = n*(n+1)*(9*n^2+n-4)/12. - Bruno Berselli, Apr 21 2010
G.f. -x*(1 +12*x +5*x^2) / (x - 1)^5 . - R. J. Mathar, Nov 17 2011
Extensions
Edited by Bruno Berselli, Oct 06 - 12 2010
Comments