cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172045 a(n) = (9*n^4+10*n^3-3*n^2-4*n)/12.

Original entry on oeis.org

0, 1, 17, 80, 240, 565, 1141, 2072, 3480, 5505, 8305, 12056, 16952, 23205, 31045, 40720, 52496, 66657, 83505, 103360, 126560, 153461, 184437, 219880, 260200, 305825, 357201, 414792, 479080, 550565, 629765, 717216, 813472, 919105, 1034705
Offset: 0

Views

Author

Vincenzo Librandi, Jan 24 2010

Keywords

Comments

The sequence is related to A002414 (octagonal pyramidal numbers) by a(n) = n*A002414(n)-sum(A002414(i), i=1..n-1) for n>0.
This is the case d=3 in the identity n*(n*(n+1)*(2*d*n-2*d+3)/6)-sum(k*(k+1)*(2*d*k-2*d+3)/6, k=0..n-1) = n*(n+1)*(3*d*n^2-d*n+4*n-2*d+2)/12. - Bruno Berselli, Nov 03 2010
Also, the sequence is related to A000567 by a(n) = sum( i*A000567(i), i=0..n ). [Bruno Berselli, Dec 19 2013]

Crossrefs

Programs

  • Magma
    [(9*n^4+10*n^3-3*n^2-4*n)/12: n in [0..50]]; // Vincenzo Librandi, Jan 01 2014
  • Mathematica
    CoefficientList[Series[x (1 + 12 x + 5 x^2)/(1 - x)^5,{x, 0, 40}], x] (* Vincenzo Librandi, Jan 01 2014 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,1,17,80,240},40] (* Harvey P. Dale, Aug 25 2019 *)

Formula

a(n) = n*(n+1)*(9*n^2+n-4)/12. - Bruno Berselli, Apr 21 2010
G.f. -x*(1 +12*x +5*x^2) / (x - 1)^5 . - R. J. Mathar, Nov 17 2011

Extensions

Edited by Bruno Berselli, Oct 06 - 12 2010