cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172046 Partial sums of floor(n^2/7) (A056834).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 11, 18, 27, 38, 52, 69, 89, 113, 141, 173, 209, 250, 296, 347, 404, 467, 536, 611, 693, 782, 878, 982, 1094, 1214, 1342, 1479, 1625, 1780, 1945, 2120, 2305, 2500, 2706, 2923, 3151, 3391, 3643, 3907, 4183, 4472, 4774, 5089, 5418, 5761, 6118
Offset: 0

Views

Author

Mircea Merca, Nov 19 2010

Keywords

Examples

			a(5) = 6 = 0 + 0 + 0 + 1 + 2 + 3.
		

Crossrefs

Cf. A056834.

Programs

  • Magma
    [Round((2*n^3+3*n^2-11*n)/42): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
  • Maple
    a:= n-> round((2*n^3+3*n^2-11*n)/42): seq (a(n), n=0..50);
  • Mathematica
    LinearRecurrence[{3,-3,1,0,0,0,1,-3,3,-1},{0,0,0,1,3,6,11,18,27,38},60] (* Harvey P. Dale, Apr 12 2017 *)

Formula

a(n) = Sum_{k=0..n} floor(k^2/7).
a(n) = round((2*n^3 + 3*n^2 - 11*n)/42).
a(n) = round((2*n^3 + 3*n^2 - 11*n - 6)/42).
a(n) = floor((2*n^3 + 3*n^2 - 11*n + 6)/42).
a(n) = ceiling((2*n^3 + 3*n^2 - 11*n - 18)/42).
a(n) = a(n-7) + (n-2)*(n-4) + 3, n > 6.
G.f.: x^3*(x+1)*(x^2 - x + 1)/((x-1)^4*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). [Colin Barker, Oct 26 2012]