cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172060 The number of returns to the origin in all possible one-dimensional walks of length 2n.

Original entry on oeis.org

0, 2, 14, 76, 374, 1748, 7916, 35096, 153254, 661636, 2831300, 12030632, 50826684, 213707336, 894945944, 3734901296, 15540685574, 64496348516, 267060529364, 1103587381256, 4552196053844, 18747042089816, 77092267322984, 316602500019536, 1298657603761244
Offset: 0

Views

Author

Geoffrey Critzer, Jan 24 2010

Keywords

Comments

a(n)/4^n is the expected number of times a gambler will return to his break-even point while making 2n equal wagers on the outcome of a fair coin toss. Note the surprisingly low and slow growth of this expectation.

Examples

			a(2) = 14 because there are fourteen 0's in the set of all possible walks of length 4: {{-1, -2, -3, -4}, {-1, -2, -3, -2}, {-1, -2, -1, -2}, {-1, -2, -1, 0}, {-1, 0, -1, -2}, {-1, 0, -1, 0}, {-1, 0, 1, 0}, {-1, 0, 1, 2}, {1, 0, -1, -2}, {1, 0, -1, 0}, {1, 0, 1, 0}, {1, 0, 1, 2}, {1, 2, 1, 0}, {1, 2, 1, 2}, {1, 2, 3, 2}, {1, 2, 3, 4}}.
		

References

  • W. Feller, An Introduction to Probability Theory and its Applications, Vol 1, 3rd ed. New York: Wiley, pp. 67-97, 1968.

Programs

  • Magma
    [Factorial(2*n+1)/Factorial(n)^2 - 4^n : n in [0..30]]; // Wesley Ivan Hurt, Mar 24 2015
    
  • Magma
    [0] cat [n le 1 select 2 else 4*Self(n-1)+ Binomial(2*n,n): n in [1..30]]; // Vincenzo Librandi, Mar 25 2015
  • Maple
    A172060:=n->(2*n+1)!/(n!)^2 - 4^n: seq(A172060(n), n=0..30); # Wesley Ivan Hurt, Mar 24 2015
  • Mathematica
    Table[Count[Flatten[Map[Accumulate, Strings[{-1, 1}, n]]], 0], {n, 0, 20, 2}]
    CoefficientList[Series[(1 - (1 - 4 x)^(1/2)) / (1 - 4 x)^(3/2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 25 2015 *)

Formula

a(n) = (2n+1)!/(n!)^2 - 4^n.
a(n) = 4*a(n-1) + binomial(2n,n).
O.g.f.: (1-(1-4x)^(1/2))/(1-4x)^(3/2).
a(n) = A002457(n) - A000302(n). - Wesley Ivan Hurt, Mar 24 2015
a(n) = 2*A000531(n). - R. J. Mathar, Jan 03 2018