cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172085 a(n) = n*(27*n^3 + 22*n^2 - 21*n - 16)/12.

Original entry on oeis.org

0, 1, 41, 212, 660, 1585, 3241, 5936, 10032, 15945, 24145, 35156, 49556, 67977, 91105, 119680, 154496, 196401, 246297, 305140, 373940, 453761, 545721, 650992, 770800, 906425, 1059201, 1230516, 1421812, 1634585, 1870385, 2130816, 2417536
Offset: 0

Views

Author

Vincenzo Librandi, Jan 25 2010

Keywords

Comments

The sequence is related to A172082 by a(n) = n*A172082(n)-sum(A172082(i), i=0..n-1).
This is the case d=9 in the identity n^2*(n+1)*(2*d*n -2*d +3)/6 - Sum_{k=0..n-1} k*(k+1)*(2*d*k -2*d +3)/6 = n*(n+1)*(3*d*n^2 - d*n + 4*n - 2*d + 2)/12. - Bruno Berselli, May 07 2010, Jan 28 2011

Crossrefs

Cf. A172082.

Programs

  • GAP
    List([0..40], n-> n*(n+1)*(27*n^2 -5*n -16)/12); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(n+1)*(27*n^2-5*n-16)/12: n in [0..40]]; // Vincenzo Librandi, Jan 02 2014
    
  • Maple
    seq(n*(n+1)*(27*n^2 -5*n -16)/12, n=0..40); # G. C. Greubel, Aug 30 2019
  • Mathematica
    CoefficientList[Series[x(1 +36x +17x^2)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jan 02 2014 *)
    Table[n*(n+1)*(27*n^2-5*n-16)/12, {n,0,40}] (* G. C. Greubel, Aug 30 2019 *)
  • PARI
    vector(40, n, m=n-1; n*m*(27*m^2 -5*m -16)/12) \\ G. C. Greubel, Aug 30 2019
    
  • Sage
    [n*(n+1)*(27*n^2 -5*n -16)/12 for n in (0..40)] # G. C. Greubel, Aug 30 2019
    

Formula

a(n) = n*(n+1)*(27*n^2 -5*n -16)/12.
From Bruno Berselli, Jan 28 2011: (Start)
G.f.: x*(1 +36*x +17*x^2)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
E.g.f.: x*(12 + 234*x + 184*x^2 + 27*x^3)*exp(x)/12. - G. C. Greubel, Aug 30 2019

Extensions

Librandi's contribution restored and rewritten from Bruno Berselli, Feb 29 2012