A172088 Triangle: T(n,m) = n!! - m!! - (n-m)!! read by rows 0 <= m <= n, where ()!! are the double factorials.
-1, -1, -1, -1, 0, -1, -1, 0, 0, -1, -1, 4, 4, 4, -1, -1, 6, 10, 10, 6, -1, -1, 32, 38, 42, 38, 32, -1, -1, 56, 88, 94, 94, 88, 56, -1, -1, 278, 334, 366, 368, 366, 334, 278, -1, -1, 560, 838, 894, 922, 922, 894, 838, 560, -1, -1, 2894, 3454, 3732, 3784, 3810, 3784, 3732, 3454, 2894, -1
Offset: 0
Examples
Triangle begins -1; -1, -1; -1, 0, -1; -1, 0, 0, -1; -1, 4, 4, 4, -1; -1, 6, 10, 10, 6, -1; -1, 32, 38, 42, 38, 32, -1; -1, 56, 88, 94, 94, 88, 56, -1; -1, 278, 334, 366, 368, 366, 334, 278, -1; -1, 560, 838, 894, 922, 922, 894, 838, 560, -1; -1, 2894, 3454, 3732, 3784, 3810, 3784, 3732, 3454, 2894, -1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
F2:=func< n | &*[n..2 by -2] >; [F2(n) - F2(k) - F2(n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 05 2019
-
Maple
A172088 := proc(n,m) doublefactorial(n)-doublefactorial(m)-doublefactorial(n-m) ; end proc: seq(seq(A172088(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 11 2011
-
Mathematica
T[n_, k_] = n!! -k!! -(n-k)!!; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
PARI
f2(n) = prod(j=0, (n-1)\2, n-2*j); T(n,k) = f2(n) - f2(k) - f2(n-k); \\ G. C. Greubel, Dec 05 2019
-
Sage
def T(n, k): return (n).multifactorial(2) - (k).multifactorial(2) - (n-k).multifactorial(2) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 05 2019
Comments