A172089 Triangle T(n,m) = n!/(m!!*(n-m)!!) read by rows, where (.)!! = A006882(.) are double factorials.
1, 1, 1, 1, 2, 1, 2, 3, 3, 2, 3, 8, 6, 8, 3, 8, 15, 20, 20, 15, 8, 15, 48, 45, 80, 45, 48, 15, 48, 105, 168, 210, 210, 168, 105, 48, 105, 384, 420, 896, 630, 896, 420, 384, 105, 384, 945, 1728, 2520, 3024, 3024, 2520, 1728, 945, 384, 945, 3840, 4725, 11520, 9450, 16128, 9450, 11520, 4725, 3840, 945
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 2, 1; 2, 3, 3, 2; 3, 8, 6, 8, 3; 8, 15, 20, 20, 15, 8; 15, 48, 45, 80, 45, 48, 15; 48, 105, 168, 210, 210, 168, 105, 48; 105, 384, 420, 896, 630, 896, 420, 384, 105; 384, 945, 1728, 2520, 3024, 3024, 2520, 1728, 945, 384; 945, 3840, 4725, 11520, 9450, 16128, 9450, 11520, 4725, 3840, 945;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
F2:=func< n | &*[n..2 by -2] >; [Factorial(n)/(F2(k)*F2(n-k)): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 05 2019
-
Maple
A172089 := proc(n,m) factorial(n)/doublefactorial(m)/doublefactorial(n-m) ; end proc: seq(seq(A172089(n,m),m=0..n),n=0..10) ; # R. J. Mathar, Oct 11 2011
-
Mathematica
binomialn[n_, k_] = n!/(Factorial2[n-k]*Factorial2[k]); Table[binomialn[n, k], {n,0,10}, {k,0,n}]//Flatten
-
PARI
f2(n) = prod(i=0, (n-1)\2, n - 2*i ); T(n,k) = n!/(f2(k)*f2(n-k)); for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 05 2019
-
Sage
def T(n, k): return factorial(n)/((k).multifactorial(2)*(n-k).multifactorial(2)) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 05 2019
Comments