cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172090 Triangle T(n, k) = f(n-k) + f(k) - f(n), where f(n) = -3*n with f(0) = 1, f(1) = -2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 25 2010

Keywords

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 2, 1;
  1, 1, 1, 1;
  1, 1, 0, 1, 1;
  1, 1, 0, 0, 1, 1;
  1, 1, 0, 0, 0, 1, 1;
  1, 1, 0, 0, 0, 0, 1, 1;
  1, 1, 0, 0, 0, 0, 0, 1, 1;
  1, 1, 0, 0, 0, 0, 0, 0, 1, 1;
  1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1;
		

Crossrefs

Row sums are A151798.

Programs

  • Mathematica
    (* First program *)
    f[n_]:= f[n]= If[n < 2, (-1)^n*(n+1), -3*n];
    T[n_, k_]:= f[n-k] +f[k] -f[n];
    Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 29 2021 *)
    (* Second program *)
    T[n_, k_]:= If[n<3, Binomial[n, k], If[n==3 || k<2 || k>n-2, 1, 0]];
    Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 29 2021 *)
  • Sage
    def f(n): return (-1)^n*(n+1) if (n<2) else -3*n
    def T(n,k): return f(n-k) + f(k) - f(n)
    flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 29 2021

Formula

T(n, k) = f(n-k) + f(k) - f(n), where f(n) = -3*n with f(0) = 1, f(1) = -2.
From G. C. Greubel, Apr 29 2021: (Start)
T(n, k) is defined by T(n, 0) = T(n, 1) = T(n, n-1) = T(n, n) = T(3, k) = 1, T(2, 1) = 2 and 0 otherwise.
Sum_{k=0..n} T(n,k) = A151798(n). (End)

Extensions

Edited by G. C. Greubel, Apr 29 2021