cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172106 The triangle T_2(n, m), where T_2(n, m) is the number of surjective multi-valued functions from {1, 1, 2, 3, ..., n-1} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n).

Original entry on oeis.org

0, 1, 1, 1, 4, 3, 1, 10, 21, 12, 1, 22, 93, 132, 60, 1, 46, 345, 900, 960, 360, 1, 94, 1173, 4980, 9300, 7920, 2520, 1, 190, 3801, 24612, 71400, 103320, 73080, 20160, 1, 382, 11973, 113652, 480060, 1048320, 1234800, 745920, 181440, 1, 766, 37065, 502500, 2968560, 9170280, 15981840, 15845760, 8346240, 1814400
Offset: 1

Views

Author

Martin Griffiths, Jan 25 2010

Keywords

Comments

T_2(1, m) = 0 by definition. T_2(n, m) also gives the number of compositions (ordered partitions) of {1, 1, 2, 3, ..., n-1} into exactly m parts.

Examples

			Triangle begins as:
  0;
  1,   1;
  1,   4,     3;
  1,  10,    21,     12;
  1,  22,    93,    132,      60;
  1,  46,   345,    900,     960,     360;
  1,  94,  1173,   4980,    9300,    7920,     2520;
  1, 190,  3801,  24612,   71400,  103320,    73080,    20160;
  1, 382, 11973, 113652,  480060, 1048320,  1234800,   745920,  181440;
  1, 766, 37065, 502500, 2968560, 9170280, 15981840, 15845760, 8346240, 1814400;
  ...
T_2(3, 2) = 4 since there are 4 ordered partitions of {1, 1, 2} into exactly 2 parts: (1) {{1}, {1, 2}} (2) {{1, 2}, {1}} (3) {{2}, {1, 1}} (4) {{1, 1},{2}}.
		

Crossrefs

This is related to A019538, A172107 and A172108.
Row sums give A172109.

Programs

  • Magma
    T:= func< n,k,m | n eq 1 select 0 else (&+[(-1)^(k+j)*Binomial(k,j)*Binomial(j+m-1,m)*j^(n-m): j in [1..k]]) >;
    [T(n,k,2): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 13 2022
    
  • Mathematica
    f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l,m}]; For[n = 2, n <= 10, n++, Print[Table[f[2, n, m], {m, 1, n}]]]
  • SageMath
    def T(n,k,m): return sum( (-1)^(k-j)*binomial(k,j)*binomial(j+m-1,m)*j^(n-m) for j in (1..k) ) - bool(n==1)
    flatten([[T(n,k,2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 13 2022

Formula

T_2(n, m) = Sum_{j=0..m} binomial(m,j)*binomial(j+1,2)*(-1)^(m-j)*j^(n-2), for n >= 2, with T(1, 1) = 0.
Sum_{k=1..n} T_2(n, k) = A172109(n).
Sum_{k=1..n} (-1)^k*T_2(n, k) = 0. - G. C. Greubel, Apr 13 2022