A305540
Triangle read by rows: T(n,k) is the number of achiral loops (necklaces or bracelets) of length n using exactly k different colors.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 3, 1, 6, 6, 1, 10, 21, 12, 1, 14, 36, 24, 1, 22, 93, 132, 60, 1, 30, 150, 240, 120, 1, 46, 345, 900, 960, 360, 1, 62, 540, 1560, 1800, 720, 1, 94, 1173, 4980, 9300, 7920, 2520, 1, 126, 1806, 8400, 16800, 15120, 5040, 1, 190, 3801, 24612, 71400, 103320, 73080, 20160, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320
Offset: 1
The triangle begins with T(1,1):
1;
1, 1;
1, 2;
1, 4, 3;
1, 6, 6;
1, 10, 21, 12;
1, 14, 36, 24;
1, 22, 93, 132, 60;
1, 30, 150, 240, 120;
1, 46, 345, 900, 960, 360;
1, 62, 540, 1560, 1800, 720;
1, 94, 1173, 4980, 9300, 7920, 2520;
1, 126, 1806, 8400, 16800, 15120, 5040;
1, 190, 3801, 24612, 71400, 103320, 73080, 20160;
1, 254, 5796, 40824, 126000, 191520, 141120, 40320;
1, 382, 11973, 113652, 480060, 1048320, 1234800, 745920, 181440;
1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880;
For a(4,2)=4, the achiral loops are AAAB, AABB, ABAB, and ABBB.
-
Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 15}, {k, 1, Ceiling[(n + 1)/2]}] // Flatten
-
T(n, k) = (k!/2)*(stirling(floor((n+1)/2), k, 2)+stirling(ceil((n+1)/2), k, 2));
tabf(nn) = for(n=1, nn, for (k=1, ceil((n+1)/2), print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 02 2018
A172107
Triangle T_3(n, m), the number of surjective multi-valued functions from {1, 1, 1, 2, 3, ..., n-2} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n).
Original entry on oeis.org
0, 0, 0, 1, 2, 1, 1, 6, 9, 4, 1, 14, 45, 52, 20, 1, 30, 177, 388, 360, 120, 1, 62, 621, 2260, 3740, 2880, 840, 1, 126, 2049, 11524, 30000, 39720, 26040, 6720, 1, 254, 6525, 54292, 207620, 418320, 460320, 262080, 60480, 1, 510, 20337, 243268, 1309560, 3755640, 6150480, 5779200, 2903040, 604800
Offset: 1
Triangle begins as:
0;
0, 0;
1, 2, 1;
1, 6, 9, 4;
1, 14, 45, 52, 20;
1, 30, 177, 388, 360, 120;
1, 62, 621, 2260, 3740, 2880, 840;
1, 126, 2049, 11524, 30000, 39720, 26040, 6720;
1, 254, 6525, 54292, 207620, 418320, 460320, 262080, 60480;
1, 510, 20337, 243268, 1309560, 3755640, 6150480, 5779200, 2903040, 604800;
-
T:= func< n,k,m | n lt 3 select 0 else (&+[(-1)^(k+j)*Binomial(k,j)*Binomial(j+m-1,m)*j^(n-m): j in [1..k]]) >;
[T(n,k,3): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 14 2022
-
f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l,m}]; For[n = 3, n <= 10, n++, Print[Table[f[3, n, m], {m, 1, n}]]]
-
def T(n,k,m):
if (n<3): return 0
else: return sum( (-1)^(k-j)*binomial(k,j)*binomial(j+m-1,m)*j^(n-m) for j in (1..k) )
flatten([[T(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 14 2022
A172108
Triangle T_4(n, m), the number of surjective multi-valued functions from {1, 1, 1, 1, 2, 3, ..., n-3} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 3, 3, 1, 1, 8, 18, 16, 5, 1, 18, 78, 136, 105, 30, 1, 38, 288, 856, 1205, 810, 210, 1, 78, 978, 4576, 10305, 12090, 7140, 1680, 1, 158, 3168, 22216, 74405, 134370, 134610, 70560, 15120, 1, 318, 9978, 101536, 483105, 1252650, 1882860, 1641360, 771120, 151200
Offset: 1
Triangle begins as:
0;
0, 0;
0, 0, 0;
1, 3, 3, 1;
1, 8, 18, 16, 5;
1, 18, 78, 136, 105, 30;
1, 38, 288, 856, 1205, 810, 210;
1, 78, 978, 4576, 10305, 12090, 7140, 1680;
1, 158, 3168, 22216, 74405, 134370, 134610, 70560, 15120;
1, 318, 9978, 101536, 483105, 1252650, 1882860, 1641360, 771120, 151200;
-
T:= func< n,k,m | n lt 4 select 0 else (&+[(-1)^(k+j)*Binomial(k,j)*Binomial(j+m-1,m)*j^(n-m): j in [1..k]]) >;
[T(n,k,4): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 14 2022
-
f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l,m}]; For[n = 4, n <= 10, n++, Print[Table[f[4, n, m], {m, 1, n}]]]
-
def T(n,k,m):
if (n<4): return 0
else: return sum( (-1)^(k-j)*binomial(k,j)*binomial(j+m-1,m)*j^(n-m) for j in (1..k) )
flatten([[T(n,k,4) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 14 2022
A172109
a(n) is the number of ordered partitions of {1,1,2,3,...,n-1}.
Original entry on oeis.org
0, 2, 8, 44, 308, 2612, 25988, 296564, 3816548, 54667412, 862440068, 14857100084, 277474957988, 5584100659412, 120462266974148, 2772968936479604, 67843210855558628, 1757952715142990612, 48093560991292628228
Offset: 1
-
[(&+[Factorial(j+1)*StirlingSecond(n-1,j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Apr 14 2022
-
f[r_, n_]:= Sum[Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l, m}], {m, n}]; Join[{0}, Table[f[2, n], {n,2,30}]]
-
a(n) = sum(k=1, n-1, stirling(n-1,k,2)*(k+1)!); \\ Michel Marcus, Apr 14 2022
-
[sum( factorial(j+1)*stirling_number2(n-1,j) for j in (1..n-1) ) for n in (1..30)] # G. C. Greubel, Apr 14 2022
Showing 1-4 of 4 results.
Comments