A027383
a(2*n) = 3*2^n - 2; a(2*n+1) = 2^(n+2) - 2.
Original entry on oeis.org
1, 2, 4, 6, 10, 14, 22, 30, 46, 62, 94, 126, 190, 254, 382, 510, 766, 1022, 1534, 2046, 3070, 4094, 6142, 8190, 12286, 16382, 24574, 32766, 49150, 65534, 98302, 131070, 196606, 262142, 393214, 524286, 786430, 1048574, 1572862, 2097150, 3145726, 4194302, 6291454
Offset: 0
After 3 folds one sees 4 fold lines.
Example: a(3) = 6 because the strings 001, 010, 100, 011, 101, 110 have the property.
Binary: 1, 10, 100, 110, 1010, 1110, 10110, 11110, 101110, 111110, 1011110, 1111110, 10111110, 11111110, 101111110, 111111110, 1011111110, 1111111110, 10111111110, ... - _Jason Kimberley_, Nov 02 2011
Example: Partial sums of powers of 2 repeated 2 times:
a(3) = 1+1+2 = 4;
a(4) = 1+1+2+2 = 6;
a(5) = 1+1+2+2+4 = 10.
_Yuchun Ji_, Nov 16 2018
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010. [John P. McSorley, Sep 28 2010]
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- J. Jordan and R. Southwell, Further Properties of Reproducing Graphs, Applied Mathematics, Vol. 1 No. 5, 2010, pp. 344-350. - From _N. J. A. Sloane_, Feb 03 2013
- Leonard F. Klosinski, Gerald L. Alexanderson and Loren C. Larson, Under misprinted head B3, Amer Math. Monthly, 104(1997) 753-754.
- Laurent Noé, Spaced seed design on profile HMMs for precise HTS read-mapping efficient sliding window product on the matrix semi-group, in Rapide Bilan 2012-2013, LIFL, Université Lille 1 - INRIA Journées au vert 11 et 12 juin 2013.
- Eric Weisstein's World of Mathematics, Cage Graph
- Index entries for sequences obtained by enumerating foldings
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2), this sequence (k=3),
A062318 (k=4),
A061547 (k=5),
A198306 (k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7). -
Jason Kimberley, Oct 30 2011
Cf.
A000066 (actual order of a (3,g)-cage).
a(n) =
A305540(n+2,2), the second column of the triangle.
Numbers whose binary expansion is a balanced word are
A330029.
The complementary compositions are counted by
A274230(n-1) + 1, with bisections
A060867 (even) and
A134057 (odd).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with
A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent:
A029744 (s(n));
A052955 (s(n)-1),
A027383 (s(n)-2),
A354788 (s(n)-3),
A347789 (s(n)-4),
A209721 (s(n)+1),
A209722 (s(n)+2),
A343177 (s(n)+3),
A209723 (s(n)+4);
A060482,
A136252 (minor differences from
A354788 at the start);
A354785 (3*s(n)),
A354789 (3*s(n)-7). The first differences of
A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences:
A016116,
A060546,
A117575,
A131572,
A152166,
A158780,
A163403,
A320770. The bisections of
A029744 are
A000079 and
A007283. -
N. J. A. Sloane, Jul 14 2022
-
import Data.List (transpose)
a027383 n = a027383_list !! n
a027383_list = concat $ transpose [a033484_list, drop 2 a000918_list]
-- Reinhard Zumkeller, Jun 17 2015
-
[2^Floor((n+2)/2)+2^Floor((n+1)/2)-2: n in [0..50]]; // Vincenzo Librandi, Aug 16 2011
-
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=2*a[n-2]+2 od: seq(a[n], n=1..41); # Zerinvary Lajos, Mar 16 2008
-
a[n_?EvenQ] := 3*2^(n/2)-2; a[n_?OddQ] := 2^(2+(n-1)/2)-2; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 21 2011, after Quim Castellsaguer *)
LinearRecurrence[{1, 2, -2}, {1, 2, 4}, 41] (* Robert G. Wilson v, Oct 06 2014 *)
Table[Length[Select[Tuples[{0,1},n],And[Max@@Length/@Split[#]<=2,!MatchQ[Length/@Split[#],{_,2,ins:1..,2,_}/;OddQ[Plus[ins]]]]&]],{n,0,15}] (* Gus Wiseman, Nov 28 2019 *)
-
a(n)=2^(n\2+1)+2^((n+1)\2)-2 \\ Charles R Greathouse IV, Oct 21 2011
-
def a(n): return 2**((n+2)//2) + 2**((n+1)//2) - 2
print([a(n) for n in range(43)]) # Michael S. Branicky, Feb 19 2022
More terms from Larry Reeves (larryr(AT)acm.org), Mar 24 2000
A273891
Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 18, 24, 12;
1, 11, 56, 136, 150, 60;
1, 16, 147, 612, 1200, 1080, 360;
1, 28, 411, 2619, 7905, 11970, 8820, 2520;
1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - _Robert A. Russell_, Sep 26 2018
-
(* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,10}, {k,1,n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)
A305541
Triangle read by rows: T(n,k) is the number of chiral pairs of color loops of length n with exactly k different colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 35, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 318, 2487, 7845, 11970, 8820, 2520, 0, 14, 934, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2634, 40488, 254676, 821592, 1481760, 1512000, 816480, 181440, 0, 62, 7503, 158220, 1344900, 5873760, 14658840, 21772800, 19051200, 9072000, 1814400
Offset: 1
Triangle T(n,k) begins:
0;
0, 0;
0, 0, 1;
0, 0, 3, 3;
0, 0, 12, 24, 12;
0, 1, 35, 124, 150, 60;
0, 2, 111, 588, 1200, 1080, 360;
0, 6, 318, 2487, 7845, 11970, 8820, 2520;
0, 14, 934, 10240, 46280, 105840, 129360, 80640, 20160;
0, 30, 2634, 40488, 254676, 821592, 1481760, 1512000, 816480, 181440;
...
For T(4,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
For T(4,4)=3, the chiral pairs are ABCD-ADCB, ABDC-ACDB, and ACBD-ADBC.
-
Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
-
T(n,k) = {-k!*(stirling((n+1)\2,k,2) + stirling(n\2+1,k,2))/4 + k!*sumdiv(n,d, eulerphi(d)*stirling(n/d,k,2))/(2*n)} \\ Andrew Howroyd, Sep 13 2019
A327878
Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromes using exactly k different symbols, 1 <= k <= 1 + floor(n/2).
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 3, 3, 0, 6, 6, 0, 7, 21, 12, 0, 14, 36, 24, 0, 18, 90, 132, 60, 0, 28, 150, 240, 120, 0, 39, 339, 900, 960, 360, 0, 62, 540, 1560, 1800, 720, 0, 81, 1149, 4968, 9300, 7920, 2520, 0, 126, 1806, 8400, 16800, 15120, 5040, 0, 175, 3765, 24588, 71400, 103320, 73080, 20160
Offset: 1
Triangle begins:
1;
0, 1;
0, 2;
0, 3, 3;
0, 6, 6;
0, 7, 21, 12;
0, 14, 36, 24;
0, 18, 90, 132, 60;
0, 28, 150, 240, 120;
0, 39, 339, 900, 960, 360;
0, 62, 540, 1560, 1800, 720;
0, 81, 1149, 4968, 9300, 7920, 2520;
0, 126, 1806, 8400, 16800, 15120, 5040;
0, 175, 3765, 24588, 71400, 103320, 73080, 20160;
...
-
T(n,k) = {sumdiv(n, d, moebius(n/d) * k! * (stirling((d+1)\2,k,2) + stirling(d\2+1,k,2)))/2}
A056489
Number of periodic palindromes using exactly three different symbols.
Original entry on oeis.org
0, 0, 0, 3, 6, 21, 36, 93, 150, 345, 540, 1173, 1806, 3801, 5796, 11973, 18150, 37065, 55980, 113493, 171006, 345081, 519156, 1044453, 1569750, 3151785, 4733820, 9492213, 14250606, 28550361, 42850116, 85798533, 128746950, 257690505, 386634060, 773661333
Offset: 1
For n=4, the three arrangements are ABAC, ABCB, and ACBC.
For n=5, the six arrangements are AABCB, AACBC, ABACC, ABBAC, ABCCB, and ACBBC.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
a:=[0,0,0,3,6];; for n in [6..40] do a[n]:=a[n-1]+5*a[n-2]-5*a[n-3]-6*a[n-4]+6*a[n-5]; od; a; # Muniru A Asiru, Sep 28 2018
-
seq(coeff(series(3*x^4*(1+x)/((1-x)*(1-2*x^2)*(1-3*x^2)),x,n+1), x, n), n = 1..40); # Muniru A Asiru, Sep 28 2018
-
k = 3; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] +
StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1, 5, -5, -6, 6}, {0, 0, 0, 3, 6}, 80] (* Vincenzo Librandi, Sep 27 2018 *)
-
a(n) = my(k=3); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
A056490
Number of periodic palindromes using exactly four different symbols.
Original entry on oeis.org
0, 0, 0, 0, 0, 12, 24, 132, 240, 900, 1560, 4980, 8400, 24612, 40824, 113652, 186480, 502500, 818520, 2158260, 3498000, 9087012, 14676024, 37728372, 60780720, 155091300, 249401880, 632972340, 1016542800, 2569858212, 4123173624, 10393634292, 16664094960
Offset: 1
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
For n=6, the 12 arrangements are ABACDC, ABADCD, ACABDB, ACADBD, ADABCB, ADACBC, ABCDCB, ABDCDB, ACBDBC, ACDBDC, ADBCBD, and ADCBCD.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
a:=[0,0,0,0,0,12,24];; for n in [8..35] do a[n]:=a[n-1]+9*a[n-2]-9*a[n-3]-26*a[n-4]+26*a[n-5]+24*a[n-6]-24*a[n-7]; od; a; # Muniru A Asiru, Sep 26 2018
-
m:=50; R:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0] cat Coefficients(R!(12*x^6*(1+x)/((1-x)*(1-2*x)*(1+2*x)*(1-2*x^2)*(1-3*x^2)))); // G. C. Greubel, Oct 13 2018
-
a:=n->(factorial(4)/2)*(Stirling2(floor((n+1)/2),4)+Stirling2(ceil((n+1)/2),4)): seq(a(n),n=1..35); # Muniru A Asiru, Sep 26 2018
-
k = 4; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] +
StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1,9,-9,-26,26,24,-24}, {0,0,0,0,0,12,24}, 40] (* Robert A. Russell, Sep 29 2018 *)
-
a(n) = my(k=4); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
A056491
Number of periodic palindromes using exactly five different symbols.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 60, 120, 960, 1800, 9300, 16800, 71400, 126000, 480060, 834120, 2968560, 5103000, 17355300, 29607600, 97567800, 165528000, 533274060, 901020120, 2855012160, 4809004200, 15050517300, 25292030400, 78417448200, 131542866000, 404936532060
Offset: 1
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
There are 120 permutations of the five letters used in ABACDEDC. These 120 arrangements can be paired up with a half turn (e.g., ABACDEDC-DEDCABAC) to arrive at the 60 arrangements for n=8. - _Robert A. Russell_, Sep 26 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Muniru A Asiru, Table of n, a(n) for n = 1..600
- Index entries for linear recurrences with constant coefficients, signature (1,14,-14,-71,71,154,-154,-120, 120).
-
a:=[0,0,0,0,0,0,0,60,120];; for n in [10..35] do a[n]:=a[n-1]+14*a[n-2]-14*a[n-3]-71*a[n-4]+71*a[n-5]+154*a[n-6]-154*a[n-7]-120*a[n-8]+120*a[n-9]; od; a; # Muniru A Asiru, Sep 26 2018
-
m:=50; R:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!(-60*x^8*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)))); // G. C. Greubel, Oct 13 2018
-
with(combinat): a:=n->(factorial(5)/2)*(Stirling2(floor((n+1)/2),5)+Stirling2(ceil((n+1)/2),5)): seq(a(n),n=1..35); # Muniru A Asiru, Sep 26 2018
-
k = 5; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] +
StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1, 14, -14, -71, 71, 154, -154, -120, 120}, {0, 0,
0, 0, 0, 0, 0, 60, 120}, 40] (* Robert A. Russell, Sep 29 2018 *)
-
a(n) = my(k=5); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
A056492
Number of periodic palindromes using exactly six different symbols.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 360, 720, 7920, 15120, 103320, 191520, 1048320, 1905120, 9170280, 16435440, 72833040, 129230640, 541130040, 953029440, 3832187040, 6711344640, 26192766600, 45674188560, 174286672560, 302899156560, 1136023139160, 1969147121760
Offset: 1
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
There are 720 permutations of the six letters used in ABACDEFEDC. These 720 arrangements can be paired up with a half turn (e.g., ABACDEFEDC-EFEDCABACD) to arrive at the 360 arrangements for n=10.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Muniru A Asiru, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (1,20,-20,-155,155,580,-580,-1044, 1044,720,-720).
-
a:=[0,0,0,0,0,0,0,0,0,360,720];; for n in [12..35] do a[n]:=a[n-1] +20*a[n-2]-20*a[n-3]-155*a[n-4]+155*a[n-5]+580*a[n-6] -580*a[n-7] -1044*a[n-8]+1044*a[n-9]+720*a[n-10]-720*a[n-11]; od; a; # Muniru A Asiru, Sep 26 2018
-
m:=50; R:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!(360*x^10*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)*(6*x^2-1)))); // G. C. Greubel, Oct 13 2018
-
with(combinat): a:=n->(factorial(6)/2)*(Stirling2(floor((n+1)/2),6)+Stirling2(ceil((n+1)/2),6)): seq(a(n),n=1..35); # Muniru A Asiru, Sep 26 2018
-
k = 6; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1,20,-20,-155,155,580,-580,-1044,1044,720,-720}, Join[Table[0,{9}],{360,720}],40] (* Robert A. Russell, Sep 29 2018 *)
-
a(n) = my(k=6); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
A327868
Number of achiral loops (necklaces or bracelets) of length n with integer entries that cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 2, 3, 8, 13, 44, 75, 308, 541, 2612, 4683, 25988, 47293, 296564, 545835, 3816548, 7087261, 54667412, 102247563, 862440068, 1622632573, 14857100084, 28091567595, 277474957988, 526858348381, 5584100659412, 10641342970443, 120462266974148, 230283190977853
Offset: 0
The a(4) = 8 achiral loops are:
1111,
1122, 1112, 1212, 1222,
1213, 1232, 1323.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 8*x^4 + 13*x^5 + 44*x^6 + 75*x^7 + ... - _Michael Somos_, May 04 2022
-
a[ n_] := If[n < 0, 0, Sum[ k!*(StirlingS2[Quotient[n+1, 2], k] + StirlingS2[Quotient[n+2, 2], k]), {k, 0, n+1}]/2]; (* Michael Somos, May 04 2022 *)
a[ n_] := If[n < 0, 0, With[{m = Quotient[n+1, 2]},
m!*SeriesCoefficient[1/(2 - Exp@x)^Mod[n, 2, 1], {x, 0, m}]]]; (* Michael Somos, May 04 2022 *)
-
a(n)={if(n<1, n==0, sum(k=0, n, k!*(stirling((n+1)\2, k, 2)+stirling(n\2+1, k, 2)))/2)}
Showing 1-9 of 9 results.
Comments