A305540
Triangle read by rows: T(n,k) is the number of achiral loops (necklaces or bracelets) of length n using exactly k different colors.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 3, 1, 6, 6, 1, 10, 21, 12, 1, 14, 36, 24, 1, 22, 93, 132, 60, 1, 30, 150, 240, 120, 1, 46, 345, 900, 960, 360, 1, 62, 540, 1560, 1800, 720, 1, 94, 1173, 4980, 9300, 7920, 2520, 1, 126, 1806, 8400, 16800, 15120, 5040, 1, 190, 3801, 24612, 71400, 103320, 73080, 20160, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320
Offset: 1
The triangle begins with T(1,1):
1;
1, 1;
1, 2;
1, 4, 3;
1, 6, 6;
1, 10, 21, 12;
1, 14, 36, 24;
1, 22, 93, 132, 60;
1, 30, 150, 240, 120;
1, 46, 345, 900, 960, 360;
1, 62, 540, 1560, 1800, 720;
1, 94, 1173, 4980, 9300, 7920, 2520;
1, 126, 1806, 8400, 16800, 15120, 5040;
1, 190, 3801, 24612, 71400, 103320, 73080, 20160;
1, 254, 5796, 40824, 126000, 191520, 141120, 40320;
1, 382, 11973, 113652, 480060, 1048320, 1234800, 745920, 181440;
1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880;
For a(4,2)=4, the achiral loops are AAAB, AABB, ABAB, and ABBB.
-
Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] + StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 15}, {k, 1, Ceiling[(n + 1)/2]}] // Flatten
-
T(n, k) = (k!/2)*(stirling(floor((n+1)/2), k, 2)+stirling(ceil((n+1)/2), k, 2));
tabf(nn) = for(n=1, nn, for (k=1, ceil((n+1)/2), print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 02 2018
A056346
Number of bracelets of length n using exactly six different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 0, 60, 1080, 11970, 105840, 821952, 5874480, 39713550, 258136200, 1631273220, 10096734312, 61536377700, 370710950400, 2213749658880, 13132080672480, 77509456944318, 455754569692680
Offset: 1
For a(6)=60, pair up the 120 permutations of BCDEF, each with its reverse, such as BCDEF-FEDCB. Precede the first of each pair with an A, such as ABCDEF. These are the 60 arrangements, all chiral. If we precede the second of each pair with an A, such as AFEDCB, we get the chiral partner of each. - _Robert A. Russell_, Sep 27 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]);
T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}];
a[n_] := T[n, 6];
Array[a, 21] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *)
k=6; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 27 2018 *)
-
a(n) = my(k=6); (k!/4) * (stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Sep 29 2018
A056502
Number of primitive (period n) periodic palindromes using exactly six different symbols.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 360, 720, 7920, 15120, 103320, 191520, 1048320, 1905120, 9170280, 16435440, 72832680, 129230640, 541129320, 953029440, 3832179120, 6711344640, 26192751480, 45674188560, 174286569240, 302899156560, 1136022947280, 1969147121760
Offset: 1
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
A305545
Number of chiral pairs of color loops of length n with exactly 6 different colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 60, 1080, 11970, 105840, 821592, 5873760, 39705630, 258121080, 1631169900, 10096542792, 61535329380, 370709045280, 2213740488600, 13132064237040, 77509384111278, 455754440462040, 2672268921657540, 15636049474529880, 91353538645037220, 533180401444362672
Offset: 1
For a(6) = 60, we pair up the 5! = 120 permutations of BCDEF, each with its reversal. Then put an A before each to end up with 60 chiral pairs such as ABCDEF-AFEDCB.
-
k=6; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
-
a(n) = my(k=6); -(k!/4)*(stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Jun 06 2018
Showing 1-4 of 4 results.
Comments