A172112 Partial sums of A023200.
3, 10, 23, 42, 79, 122, 189, 268, 365, 468, 577, 704, 867, 1060, 1283, 1512, 1789, 2096, 2409, 2758, 3137, 3534, 3973, 4430, 4893, 5380, 5879, 6492, 7135, 7808, 8547, 9304, 10073, 10896, 11749, 12608, 13485, 14368, 15275, 16212, 17179, 18188, 19275
Offset: 1
Examples
a(30) = 3 + 7 + 13 + 19 + 37 + 43 + 67 + 79 + 97 + 103 + 109 + 127 + 163 + 193 + 223 + 229 + 277 + 307 + 313 + 349 + 379 + 397 + 439 + 457 + 463 + 487 + 499 + 613 + 643 + 673 = 7808.
Programs
-
Mathematica
Accumulate[Select[Prime[Range[250]],PrimeQ[#+4]&]] (* Harvey P. Dale, Oct 09 2023 *)
Formula
a(n) = SUM[i=i..n] A023200(i) = SUM[i=i..n] {Primes p such that p and p + 4 are both primes}.
Extensions
More terms from Max Alekseyev, Jan 31 2010
Comments