cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172124 Number of ways to place 3 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 26, 232, 1124, 3896, 10894, 26192, 56296, 110960, 204130, 355000, 589196, 940072, 1450134, 2172576, 3172944, 4530912, 6342186, 8720520, 11799860, 15736600, 20711966, 26934512, 34642744, 44107856, 55636594, 69574232
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2010

Keywords

References

  • E. Bonsdorff, K. Fabel, O. Riihimaa, Schach und Zahl, 1966, p. 51-63

Crossrefs

Programs

  • Magma
    [(n*(n-2)*(2*n^4 -4*n^3 +7*n^2 -6*n +4) +3*(n mod 2))/12: n in [1..40]]; // G. C. Greubel, Apr 16 2022
    
  • Mathematica
    CoefficientList[Series[2x^2(3x^4 +18x^3 +48x^2 +38x +13)/((1-x)^7 (x+1)), {x, 0, 30}], x] (* Vincenzo Librandi, May 26 2013 *)
  • SageMath
    [(n*(n-2)*(2*n^4 -4*n^3 +7*n^2 -6*n +4) +3*(n%2))/12 for n in (1..40)] # G. C. Greubel, Apr 16 2022

Formula

Explicit formulas (Karl Fabel, 1966): (Start)
a(n) = n*(n-2)*(2*n^4 - 4*n^3 + 7*n^2 - 6*n + 4)/12 if n is even.
a(n) = (n-1)*(2*n^5 - 6*n^4 + 9*n^3 - 11*n^2 + 5*n - 3)/12 if n is odd. (End)
G.f.: 2*x^3*(13+38*x+48*x^2+18*x^3+3*x^4)/((1-x)^7*(1+x)). - .Vaclav Kotesovec, Mar 25 2010
a(n) = (2*(n-2)*n*(2*n^4-4*n^3+7*n^2-6*n+4)-3*(-1)^n+3)/24. - Bruno Berselli, May 26 2013
E.g.f.: (1/24)*( (3 - 6*x + 6*x^2 + 100*x^3 + 130*x^4 + 44*x^5 + 4*x^6)*exp(x) - 3*exp(-x) ). - G. C. Greubel, Apr 16 2022