cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A172227 Number of ways to place 4 nonattacking wazirs on an n X n board.

Original entry on oeis.org

0, 0, 6, 405, 5024, 31320, 133544, 446421, 1258590, 3126724, 7042930, 14669709, 28658436, 53069000, 93909924, 159819965, 262913874, 419816676, 652912510, 991835749, 1475233800, 2152832664, 3087838016, 4359706245, 6067321574, 8332617060, 11304678954
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

A wazir is a (fairy chess) leaper [0,1].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (4 x^8 - 26 x^7 + 3 x^6 + 303 x^5 - 736 x^4 + 180 x^3 + 1595 x^2 + 351 x + 6) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = (n^8-30n^6+24n^5+323n^4-504n^3-1110n^2+2760n-1224)/24, n>=3.
G.f.: -x^3*(4*x^8-26*x^7+3*x^6+303*x^5-736*x^4+180*x^3+1595*x^2+351*x+6)/(x-1)^9. - Vaclav Kotesovec, Apr 29 2011
a(n) = A232833(n,4). - R. J. Mathar, Apr 11 2024

Extensions

Corrected a(3) and g.f., Vaclav Kotesovec, Apr 29 2011

A172140 Number of ways to place 5 nonattacking zebras on an n X n board.

Original entry on oeis.org

0, 0, 126, 2032, 20502, 160696, 929880, 4117520, 15037036, 47368960, 132577826, 336828368, 789558314, 1729320120, 3574328936, 7027309888, 13226773092, 23959787480, 41954706558, 71276149776, 117848892710, 190142197976
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 26 2010

Keywords

Comments

Zebra is a (fairy chess) leaper [2,3].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2x^2(100x^19 -648x^18 +1450x^17 -2126x^16 +10452x^15 - 43872x^14 +92798x^13 -100834x^12 +56460x^11 -61636x^10 +182288x^9 -303224x^8 + 275038x^7 -128982x^6 +21681x^5 +1933x^4 -13072x^3 -2540x^2 -323x-63)/(x-1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
  • SageMath
    [0,0,126,2032,20502,160696,929880,4117520,15037036,47368960,132577826] + [(n^10 -90*n^8 +400*n^7 +2915*n^6 -26880*n^5 +2430*n^4 +609920*n^3 - 1517496*n^2 -4188480*n +16581120)/120 for n in (12..50)] # G. C. Greubel, Apr 19 2022

Formula

a(n) = (n^10 - 90*n^8 + 400*n^7 + 2915*n^6 - 26880*n^5 + 2430*n^4 + 609920*n^3 - 1517496*n^2 - 4188480*n + 16581120)/120, n >= 12.
For any fixed value of k > 1, a(n) = n^(2k) /k! - 9n^(2k - 2) /2/(k - 2)! + 20n^(2k - 3) /(k - 2)! + ...
G.f.: 2*x^3 * (100*x^19 -648*x^18 +1450*x^17 -2126*x^16 +10452*x^15 -43872*x^14 +92798*x^13 -100834*x^12 +56460*x^11 -61636*x^10 +182288*x^9 -303224*x^8 +275038*x^7 -128982*x^6 +21681*x^5 +1933*x^4 -13072*x^3 -2540*x^2 -323*x -63) / (x-1)^11. - Vaclav Kotesovec, Mar 25 2010

A244284 Number of ways to place n nonattacking zebras on an n X n chessboard.

Original entry on oeis.org

1, 6, 84, 1168, 20502, 525796, 18939708, 802444170, 38934305898, 2170312156170
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 25 2014

Keywords

Comments

Zebra is a (fairy chess) leaper [2,3].

Crossrefs

Formula

a(n) ~ n^(2*n)/n! * exp(-9/2).

A172222 Number of ways to place 4 nonattacking zebras on a 4 X n board.

Original entry on oeis.org

1, 70, 406, 1168, 2948, 6576, 13122, 23808, 40168, 63996, 97344, 142516, 202072, 278828, 375856, 496484, 644296, 823132, 1037088, 1290516, 1588024, 1934476, 2334992, 2794948, 3319976
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 29 2010

Keywords

Comments

Zebra is a (fairy chess) leaper [2,3].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(4 x^12 - 6 x^11 - 2 x^10 - 52 x^9 + 160 x^8 - 88 x^7 + 2 x^6 - 195 x^5 + 473 x^4 - 172 x^3 + 66 x^2 + 65 x + 1) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, May 28 2013 *)

Formula

a(n) = 4*(8*n^4 - 48*n^3 + 202*n^2 - 471*n + 507)/3, n>=9.
G.f.: -x * (4*x^12 -6*x^11 -2*x^10 -52*x^9 +160*x^8 -88*x^7 +2*x^6 -195*x^5 +473*x^4 -172*x^3 +66*x^2 +65*x +1) / (x-1)^5. - Vaclav Kotesovec, Mar 25 2010
Showing 1-4 of 4 results.