A172172 Sums of NW-SE diagonals of triangle A172171.
0, 1, 10, 20, 39, 68, 116, 193, 318, 520, 847, 1376, 2232, 3617, 5858, 9484, 15351, 24844, 40204, 65057, 105270, 170336, 275615, 445960, 721584, 1167553, 1889146, 3056708, 4945863, 8002580, 12948452, 20951041, 33899502, 54850552, 88750063, 143600624, 232350696
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1).
Programs
-
Magma
[Lucas(n+2) +6*Fibonacci(n+1) -9: n in [0..50]]; // G. C. Greubel, Apr 25 2022
-
Mathematica
CoefficientList[Series[x*(1+8*x)/((1-x)*(1-x-x^2)), {x,0,50}], x] (* G. C. Greubel, Jul 13 2017 *)
-
PARI
concat(0, Vec(x*(1+8*x)/((1-x)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Jul 13 2017
-
SageMath
[fibonacci(n+3) +7*fibonacci(n+1) -9 for n in (0..50)] # G. C. Greubel, Apr 25 2022
Formula
a(n) = a(n-1) + a(n-2) + 9 with a(0)=0 and a(1)=1.
From Wolfdieter Lang, Oct 18 2010: (Start)
O.g.f.: x*(1+8*x)/((1-x)*(1-x-x^2)).
a(n) = 2*a(n-1) - a(n-3), a(0)=0, a(1)=1, a(2)=10 (Observation by G. Detlefs).
(End)
a(n+1) - a(n) = A022099(n). - R. J. Mathar, Apr 22 2013
a(n) = -9 + ( (11 + 9*sqrt(5))*(1 + sqrt(5))^n - (11 - 9*sqrt(5))*(1 - sqrt(5))^n )/(2^(n+1)*sqrt(5)). - Colin Barker, Jul 13 2017
a(n) = Fibonacci(n+3) + 7*Fibonacci(n+1) - 9. - G. C. Greubel, Apr 25 2022
Extensions
Wrong offset 1 changed into 0 Wolfdieter Lang, Oct 18 2010
Comments