A172193 a(n) = 5*n^2 + 31*n + 1.
1, 37, 83, 139, 205, 281, 367, 463, 569, 685, 811, 947, 1093, 1249, 1415, 1591, 1777, 1973, 2179, 2395, 2621, 2857, 3103, 3359, 3625, 3901, 4187, 4483, 4789, 5105, 5431, 5767, 6113, 6469, 6835, 7211, 7597, 7993, 8399, 8815, 9241, 9677, 10123, 10579
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A172043 (5*n^2-n+1).
Programs
-
Magma
[ 5*n^2+31*n+1: n in [0..50] ];
-
Mathematica
CoefficientList[Series[(1 +34x -25x^2)/(1-x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Apr 07 2013 *) LinearRecurrence[{3,-3,1},{1,37,83},50] (* Harvey P. Dale, May 16 2025 *)
-
PARI
a(n)=5*n^2+31*n+1 \\ Charles R Greathouse IV, Jun 17 2017
-
SageMath
[((10*n+31)^2 -941)/20 for n in (0..50)] # G. C. Greubel, Apr 28 2022
Formula
G.f.: (1+34*x-25*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Apr 07 2013
E.g.f.: (1 + 36*x + 5*x^2)*exp(x). - G. C. Greubel, Apr 28 2022
Extensions
Replaced definition with formula. - N. J. A. Sloane, Mar 03 2010