cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172237 T(n,k) = T(n-1,k) + k*T(n-2,k) for k >= 1 and n >= 3 with T(0,k) = 0 and T(1,k) = T(2,k) = 1 for all k >= 1; array T(n,k), read by descending antidiagonals, with n >= 0 and k >= 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 3, 0, 1, 1, 4, 5, 5, 0, 1, 1, 5, 7, 11, 8, 0, 1, 1, 6, 9, 19, 21, 13, 0, 1, 1, 7, 11, 29, 40, 43, 21, 0, 1, 1, 8, 13, 41, 65, 97, 85, 34, 0, 1, 1, 9, 15, 55, 96, 181, 217, 171, 55, 0, 1, 1, 10, 17, 71, 133, 301, 441, 508, 341, 89, 0, 1, 1, 11
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 29 2010

Keywords

Comments

Transposed variant of A083856, without the top row of A083856.
Antidiagonal sums are (0, 1, 2, 4, 8, 16, 33, 70, 153, 345, ...) = (A110113(n) - 1: n >= 1).
Characteristic polynomials for columns are y^2 - y - k.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 1) begins as follows:
    0,    0,    0,    0,    0,     0,     0,     0,     0,     0, ...
    1,    1,    1,    1,    1,     1,     1,     1,     1,     1, ...
    1,    1,    1,    1,    1,     1,     1,     1,     1,     1, ...
    2,    3,    4,    5,    6,     7,     8,     9,    10,    11, ...
    3,    5,    7,    9,   11,    13,    15,    17,    19,    21, ...
    5,   11,   19,   29,   41,    55,    71,    89,   109,   131, ...
    8,   21,   40,   65,   96,   133,   176,   225,   280,   341, ...
   13,   43,   97,  181,  301,   463,   673,   937,  1261,  1651, ...
   21,   85,  217,  441,  781,  1261,  1905,  2737,  3781,  5061, ...
   34,  171,  508, 1165, 2286,  4039,  6616, 10233, 15130, 21571, ...
   55,  341, 1159, 2929, 6191, 11605, 19951, 32129, 49159, 72181, ...
   ...
		

Crossrefs

Programs

  • Maple
    A172237 := proc(n,k)
            if n = 0 then
                    0;
            elif n <=2 then
                    1 ;
            else
                    procname(n-1,k)+k*procname(n-2,k) ;
            end if;
    end proc: # R. J. Mathar, Jul 05 2012
  • Mathematica
    f[0, a_] := 0; f[1, a_] := 1;
    f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
    m1 = Table[f[n, a], {n, 0, 10}, {a, 1, 11}];
    Table[Table[m1[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
    Flatten[%]

Extensions

More terms from Petros Hadjicostas, Dec 26 2019